前言
假如面试官让你编写求斐波那契数列的代码时,是不是心中暗喜?不就是递归么,早就会了。如果真这么想,那就危险了。
递归求斐波那契数列
递归,在数学与计算机科学中,是指在函数的定义中使用函数自身的方法。
斐波那契数列的计算表达式很简单:
F(n) = n; n = 0,1
F(n) = F(n-1) + F(n-2),n >= 2;
因此,我们能很快根据表达式写出递归版的代码:
/*fibo.c*/
#include <stdio.h>
#include <stdlib.h>
/*求斐波那契数列递归版*/
unsigned long fibo(unsigned long int n)
{
if(n <= 1)
return n;
else
return fibo(n-1) + fibo(n-2);
}
int main(int argc,char *argv[])
{
if(1 >= argc)
{
printf("usage:./fibo num\n");
return -1;
}
unsigned long n = atoi(argv[1]);
unsigned long fiboNum = fibo(n);
printf("the %lu result is %lu\n",n,fiboNum);
return 0;
}
关键代码为3~9行。简洁明了,一气呵成。
编译:
gcc -o fibo fibo.c
运行计算第5个斐波那契数:
$ time ./fibo 5
the 5 result is 5
real 0m0.001s
user 0m0.001s
sys 0m0.000s
看起来并没有什么不妥,运行时间也很短。
继续计算第50个斐波那契数列:
$ time ./fibo 50
the 50 result is 12586269025
real 1m41.655s
user 1m41.524s
sys 0m0.076s
计算第50个斐波那契数的时候,竟然花了一分多钟!
递归分析
为什么计算第50个的时候竟然需要1分多钟。我们仔细分析我们的递归算法,就会发现问题,当我们计算fibo(5)的时候,是下面这样的:
|--F(1)
|--F(2)|
|--F(3)| |--F(0)
| |
|--F(4)| |--F(1)
| |
| | |--F(1)
| |--F(2)|
| |--F(0)
F(5)|
| |--F(1)
| |--F(2)|
| | |--F(0)
|--F(3)|
|
|--F(1)
为了计算fibo(5),需要计算fibo(3),fibo(4);而为了计算fibo(4),需要计算fibo(2),fibo(3)……最终为了得到fibo(5)的结果,fibo(0)被计算了3次,fibo(1)被计算了5次,fibo(2)被计算了2次。可以看到,它的计算次数几乎是指数级的!
因此,虽然递归算法简洁,但是在这个问题中,它的时间复杂度却是难以接受的。除此之外,递归函数调用的越来越深,它们在不断入栈却迟迟不出栈,空间需求越来越大,虽然访问速度高,但大小是有限的,最终可能导致栈溢出。
在linux中,我们可以通过下面的命令查看栈空间的软限制:
$ ulimit -s
8192
可以看到,默认栈空间大小只有8M。一般来说,8M的栈空间对于一般程序完全足够。如果8M的栈空间不够使用,那么就需要重新审视你的代码设计了。
迭代解法
既然递归法不够优雅,我们换一种方法。如果不用计算机计算,让你去算第n个斐波那契数,你会怎么做呢?我想最简单直接的方法应该是:知道第一个和第二个后,计算第三个;知道第二个和第三个后,计算第四个,以此类推。最终可以得到我们需要的结果。这种思路,没有冗余的计算。基于这个思路,我们的C语言实现如下:
/*fibo1.c*/
#include <stdio.h>
#include <stdlib.h>
/*求斐波那契数列迭代版*/
unsigned long fibo(unsigned long n)
{
unsigned long preVal = 1;
unsigned long prePreVal = 0;
if(n <= 2)
return n;
unsigned long loop = 1;
unsigned long returnVal = 0;
while(loop < n)
{
returnVal = preVal +prePreVal;
/*更新记录结果*/
prePreVal = preVal;
preVal = returnVal;
loop++;
}
return returnVal;
}
/**main函数部分与fibo.c相同,这里省略*/
编译并计算第50个斐波那契数:
$ gcc -o fibo1 fibo1.c
$ time ./fibo1 50
the 50 result is 12586269025
real 0m0.002s
user 0m0.001s
sys 0m0.002s
可以看到,计算第50个斐波那契数只需要0.002s!时间复杂度为O(n)。
尾递归解法
同样的思路,但是采用尾递归的方法来计算。要计算第n个斐波那契数,我们可以先计算第一个,第二个,如果未达到n,则继续递归计算,尾递归C语言实现如下:
/*fibo2.c*/
#include <stdio.h>
#include <stdlib.h>
/*求斐波那契数列尾递归版*/
unsigned long fiboProcess(unsigned long n,unsigned long prePreVal,unsigned long preVal,unsigned long begin)
{
/*如果已经计算到我们需要计算的,则返回*/
if(n == begin)
return preVal+prePreVal;
else
{
begin++;
return fiboProcess(n,preVal,prePreVal+preVal,begin);
}
}
unsigned long fibo(unsigned long n)
{
if(n <= 1)
return n;
else
return fiboProcess(n,0,1,2);
}
/**main函数部分与fibo.c相同,这里省略*/
效率如何呢?
$ gcc -o fibo2 fibo2.c
$ time ./fibo2 50
the 50 result is 12586269025
real 0m0.002s
user 0m0.001s
sys 0m0.002s
可见,其效率并不逊于迭代法。尾递归在函数返回之前的最后一个操作仍然是递归调用。尾递归的好处是,进入下一个函数之前,已经获得了当前函数的结果,因此不需要保留当前函数的环境,内存占用自然也是比最开始提到的递归要小。时间复杂度为O(n)。
递归改进版
既然我们知道最初版本的递归存在大量的重复计算,那么我们完全可以考虑将已经计算的值保存起来,从而避免重复计算,该版本代码实现如下:
/*fibo3.c*/
#include <stdio.h>
#include <stdlib.h>
/*求斐波那契数列,避免重复计算版本*/
unsigned long fiboProcess(unsigned long *array,unsigned long n)
{
if(n < 2)
return n;
else
{
/*递归保存值*/
array[n] = fiboProcess(array,n-1) + array[n-2];
return array[n];
}
}
unsigned long fibo(unsigned long n)
{
if(n <= 1)
return n;
unsigned long ret = 0;
/*申请数组用于保存已经计算过的内容*/
unsigned long *array = (unsigned long*)calloc(n+1,sizeof(unsigned long));
if(NULL == array)
{
return -1;
}
array[1] = 1;
ret = fiboProcess(array,n);
free(array);
array = NULL;
return ret;
}
/**main函数部分与fibo.c相同,这里省略*/
效率如何呢?
$ gcc -o fibo3 fibo3.c
$ time ./fibo3 50
the 50 result is 12586269025
real 0m0.002s
user 0m0.002s
sys 0m0.001s
可见效率是不逊于其他两种优化算法的。但是特别注意的是,这种改进版的递归,虽然避免了重复计算,但是调用链仍然比较长。
其他解法
其他两种时间复杂度为O(logn)的矩阵解法以及O(1)的通项表达式解法本文不介绍。欢迎留言补充。
总结
总结一下递归的优缺点:
优点:
- 实现简单
- 可读性好
缺点:
- 递归调用,占用空间大
- 递归太深,易发生栈溢出
- 可能存在重复计算
可以看到,对于求斐波那契数列的问题,使用一般的递归并不是一种很好的解法。
所以,当你使用递归方式实现一个功能之前,考虑一下使用递归带来的好处是否抵得上它的代价。
更多解法请参考 https://www.yanbinghu.com/2019/01/07/16863.html
微信公众号【编程珠玑】:专注但不限于分享计算机编程基础,Linux,C语言,C++,算法,数据库等编程相关[原创]技术文章,号内包含大量经典电子书和视频学习资源。欢迎一起交流学习,一起修炼计算机“内功”,知其然,更知其所以然。