Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, add spaces in s to construct a sentence where each word is a valid dictionary word. You may assume the dictionary does not contain duplicate words.
Return all such possible sentences.
For example, given
s = “catsanddog”,
dict = [“cat”, “cats”, “and”, “sand”, “dog”].
A solution is [“cats and dog”, “cat sand dog”].
题意:139的followup,求出所有的break方案。
思路:
第一想到的还是深度优先搜索,在139的基础上用一个String类型的path记录当前的break方案,再用一个List<String> res存储找到的所有path。
public List<String> wordBreak(String s, List<String> wordDict) {
List<String> res = new ArrayList<>();
if (s == null || s.length() == 0) {
return res;
}
HashSet<String> set = new HashSet<>();
for (String word : wordDict) {
set.add(word);
}
dfs(s, 0, set, res, "");
return res;
}
private void dfs(String s, int start, HashSet<String> set, List<String> res, String path) {
if (start == s.length()) {
res.add(path.trim());
return;
}
for (int i = start + 1; i <= s.length(); i++) {
String str = s.substring(start, i);
if (!set.contains(str)) {
continue;
}
dfs(s, i, set, res, path + str + " ");
}
}
提交以后还是会超时,下面是一个记忆化搜索的解法,通过hashmap来记录后面子串已经搜索过的组合,来避免重复搜索。
public List<String> wordBreak(String s, Set<String> wordDict) {
return DFS(s, wordDict, new HashMap<String, LinkedList<String>>());
}
// DFS function returns an array including all substrings derived from s.
List<String> DFS(String s, Set<String> wordDict, HashMap<String, LinkedList<String>>map) {
if (map.containsKey(s))
return map.get(s);
LinkedList<String>res = new LinkedList<String>();
if (s.length() == 0) {
res.add("");
return res;
}
for (String word : wordDict) {
if (s.startsWith(word)) {
List<String>sublist = DFS(s.substring(word.length()), wordDict, map);
for (String sub : sublist)
res.add(word + (sub.isEmpty() ? "" : " ") + sub);
}
}
map.put(s, res);
return res;
}