文章作者:Tyan
博客:noahsnail.com | CSDN | 简书
1. 问题描述
Find the contiguous subarray within an array (containing at least one number) which has the largest product.
For example, given the array [2,3,-2,4],
the contiguous subarray [2,3] has the largest product = 6.
2. 求解
这个题跟Leetcode 53——Maximum Subarray类似,可以用三重循环,两种循环解决。但最好的还是用动态规划解决,找出状态转移方程最关键。由于乘积可能为负数,负负得正,因此第i-1
次的乘积最大值(maxValuePre)与最小值(minValuePre)都需要保留。当然也可以定义最大值最小值数组来保存第i次乘积的最大值(maxValue)与最小值(minValue)。与Maximum Subarray相比,最大值为maxValue = max(minValuePre * nums[i], maxValuePre * nums[i], nums[i])
,最小值同样如此。
没有定义最大值数组与最小值数组
public class Solution {
public int maxProduct(int[] nums) {
int n = nums.length;
int maxValue = nums[0];
int minValue = nums[0];
int result = nums[0];
int maxValuePre = nums[0], minValuePre = nums[0];
for(int i = 1; i < n; i++) {
maxValue = Math.max(minValuePre * nums[i], Math.max(maxValuePre * nums[i], nums[i]));
minValue = Math.min(minValuePre * nums[i], Math.min(maxValuePre * nums[i], nums[i]));
if(maxValue > result) {
result = maxValue;
}
maxValuePre = maxValue;
minValuePre = minValue;
}
return result;
}
}
定义最大值数组与最小值数组
public class Solution {
public int maxProduct(int[] nums) {
int n = nums.length;
int maxValue[] = new int[nums.length];
int minValue[] = new int[nums.length];
maxValue[0] = nums[0];
minValue[0] = nums[0];
int result = nums[0];
for(int i = 1; i < n; i++) {
maxValue[i] = Math.max(minValue[i - 1] * nums[i], Math.max(maxValue[i - 1] * nums[i], nums[i]));
minValue[i] = Math.min(minValue[i - 1] * nums[i], Math.min(maxValue[i - 1] * nums[i], nums[i]));
if(maxValue[i] > result) {
result = maxValue[i];
}
}
return result;
}
}