[剑指offer] 变态跳台阶

本文首发于我的个人博客:尾尾部落

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

解题思路

f(1) = 1
f(2) = f(2-1) + f(2-2)        
f(3) = f(3-1) + f(3-2) + f(3-3) 
...
f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n) 

因为青蛙可以跳上任意级的台阶,所以以青蛙跳上一个 4 级的台阶为例进行分析,它可以在开始直接跳 4 级到 4 级台阶,也可以从 1 级台阶上往上跳 3 个台阶到 4 级,也可以从 2 级台阶往上跳 2 个台阶到 4 级,还可以从 3 级台阶上跳 3 级到 4 级。所以f(4) = f(4-1) + f(4-2) + f(4-3) + f(4-4)
可以得出以下的公式:

f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) 
=> f(0) + f(1) + f(2) + f(3) + ... + f(n-1)
又因为:
f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) 
       = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)
f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)
     = 2 * f(n-1)

最后可以得到
f(n) = 1, (n=0)
f(n) = 1, (n=1)
f(n) = 2*f(n-1),(n>=2)

参考代码

public class Solution {
    public int JumpFloorII(int target) {
        if(target<=0)
            return 0;
        if(target == 1||target ==2)
            return target;
        else
            return 2*JumpFloorII(target-1);
    }
}
    原文作者:繁著
    原文地址: https://www.jianshu.com/p/fef1ae7cdefc
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞