Problem
You are given a m x n 2D grid initialized with these three possible values.
-
-1
– A wall or an obstacle. -
0
– A gate. -
INF
– Infinity means an empty room. We use the value2<sup>31</sup> - 1 = 2147483647
to representINF
as you may assume that the distance to a gate is less than2147483647
.
Fill each empty room with the distance to its nearest gate. If it is impossible to reach a gate, it should be filled with INF
.
For example, given the 2D grid:
INF -1 0 INF
INF INF INF -1
INF -1 INF -1
0 -1 INF INF
After running your function, the 2D grid should be:
3 -1 0 1
2 2 1 -1
1 -1 2 -1
0 -1 3 4
Solution
一次遍历数组中的每一个元素,当发现0时用bfs更新以0为起点周围的元素,如果那个元素不为0, -1, 并且它的值大于这次更新的值,则入队列。否则不入(因为如果它已经小于这次更新的值,说明有其他的0已经更新过它)。
struct qType {
pair<int, int> node;
int step;
};
class Solution {
public:
void bfs(vector<vector<int>>& rooms, int x, int y) {
int step[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
queue<qType> q;
pair<int, int> start;
start.first = x;
start.second = y;
qType qNode;
qNode.node = start;
qNode.step = 0;
q.push(qNode);
int n = rooms.size();
int m = rooms[0].size();
while(!q.empty()) {
qType qNode = q.front();
q.pop();
for(int i = 0; i < 4; i++) {
int newX = qNode.node.first + step[i][0];
int newY = qNode.node.second + step[i][1];
if (0 <= newX && newX < n && 0 <= newY && newY < m &&
rooms[newX][newY] != -1 && rooms[newX][newY] != 0 &&
rooms[newX][newY] > qNode.step + 1) {
rooms[newX][newY] = qNode.step + 1;
qType newNode;
newNode.node.first = newX;
newNode.node.second = newY;
newNode.step = qNode.step + 1;
q.push(newNode);
}
}
}
}
void wallsAndGates(vector<vector<int>>& rooms) {
for(int i = 0; i < rooms.size(); i++) {
for(int j = 0; j < rooms[i].size(); j++) {
if (rooms[i][j] == 0) {
bfs(rooms, i, j);
}
}
}
}
};