12.8 简单的并行编程¶
问题¶
你有个程序要执行CPU密集型工作,你想让他利用多核CPU的优势来运行的快一点。
解决方案¶
concurrent.futures
库提供了一个 ProcessPoolExecutor
类,
可被用来在一个单独的Python解释器中执行计算密集型函数。
不过,要使用它,你首先要有一些计算密集型的任务。
我们通过一个简单而实际的例子来演示它。假定你有个Apache web服务器日志目录的gzip压缩包:
logs/
20120701.log.gz
20120702.log.gz
20120703.log.gz
20120704.log.gz
20120705.log.gz
20120706.log.gz
...
进一步假设每个日志文件内容类似下面这样:
124.115.6.12 - - [10/Jul/2012:00:18:50 -0500] "GET /robots.txt ..." 200 71
210.212.209.67 - - [10/Jul/2012:00:18:51 -0500] "GET /ply/ ..." 200 11875
210.212.209.67 - - [10/Jul/2012:00:18:51 -0500] "GET /favicon.ico ..." 404 369
61.135.216.105 - - [10/Jul/2012:00:20:04 -0500] "GET /blog/atom.xml ..." 304 -
...
下面是一个脚本,在这些日志文件中查找出所有访问过robots.txt文件的主机:
# findrobots.py
import gzip
import io
import glob
def find_robots(filename):
'''
Find all of the hosts that access robots.txt in a single log file
'''
robots = set()
with gzip.open(filename) as f:
for line in io.TextIOWrapper(f,encoding='ascii'):
fields = line.split()
if fields[6] == '/robots.txt':
robots.add(fields[0])
return robots
def find_all_robots(logdir):
'''
Find all hosts across and entire sequence of files
'''
files = glob.glob(logdir+'/*.log.gz')
all_robots = set()
for robots in map(find_robots, files):
all_robots.update(robots)
return all_robots
if __name__ == '__main__':
robots = find_all_robots('logs')
for ipaddr in robots:
print(ipaddr)
前面的程序使用了通常的map-reduce风格来编写。
函数 find_robots()
在一个文件名集合上做map操作,并将结果汇总为一个单独的结果,
也就是 find_all_robots()
函数中的 all_robots
集合。
现在,假设你想要修改这个程序让它使用多核CPU。
很简单——只需要将map()操作替换为一个 concurrent.futures
库中生成的类似操作即可。
下面是一个简单修改版本:
# findrobots.py
import gzip
import io
import glob
from concurrent import futures
def find_robots(filename):
'''
Find all of the hosts that access robots.txt in a single log file
'''
robots = set()
with gzip.open(filename) as f:
for line in io.TextIOWrapper(f,encoding='ascii'):
fields = line.split()
if fields[6] == '/robots.txt':
robots.add(fields[0])
return robots
def find_all_robots(logdir):
'''
Find all hosts across and entire sequence of files
'''
files = glob.glob(logdir+'/*.log.gz')
all_robots = set()
with futures.ProcessPoolExecutor() as pool:
for robots in pool.map(find_robots, files):
all_robots.update(robots)
return all_robots
if __name__ == '__main__':
robots = find_all_robots('logs')
for ipaddr in robots:
print(ipaddr)
通过这个修改后,运行这个脚本产生同样的结果,但是在四核机器上面比之前快了3.5倍。 实际的性能优化效果根据你的机器CPU数量的不同而不同。
讨论¶
ProcessPoolExecutor
的典型用法如下:
from concurrent.futures import ProcessPoolExecutor
with ProcessPoolExecutor() as pool:
...
do work in parallel using pool
...
其原理是,一个 ProcessPoolExecutor
创建N个独立的Python解释器,
N是系统上面可用CPU的个数。你可以通过提供可选参数给 ProcessPoolExecutor(N)
来修改
处理器数量。这个处理池会一直运行到with块中最后一个语句执行完成,
然后处理池被关闭。不过,程序会一直等待直到所有提交的工作被处理完成。
被提交到池中的工作必须被定义为一个函数。有两种方法去提交。
如果你想让一个列表推导或一个 map()
操作并行执行的话,可使用 pool.map()
:
# A function that performs a lot of work
def work(x):
...
return result
# Nonparallel code
results = map(work, data)
# Parallel implementation
with ProcessPoolExecutor() as pool:
results = pool.map(work, data)
另外,你可以使用 pool.submit()
来手动的提交单个任务:
# Some function
def work(x):
...
return result
with ProcessPoolExecutor() as pool:
...
# Example of submitting work to the pool
future_result = pool.submit(work, arg)
# Obtaining the result (blocks until done)
r = future_result.result()
...
如果你手动提交一个任务,结果是一个 Future
实例。
要获取最终结果,你需要调用它的 result()
方法。
它会阻塞进程直到结果被返回来。
如果不想阻塞,你还可以使用一个回调函数,例如:
def when_done(r):
print('Got:', r.result())
with ProcessPoolExecutor() as pool:
future_result = pool.submit(work, arg)
future_result.add_done_callback(when_done)
回调函数接受一个 Future
实例,被用来获取最终的结果(比如通过调用它的result()方法)。
尽管处理池很容易使用,在设计大程序的时候还是有很多需要注意的地方,如下几点:
这种并行处理技术只适用于那些可以被分解为互相独立部分的问题。
被提交的任务必须是简单函数形式。对于方法、闭包和其他类型的并行执行还不支持。
函数参数和返回值必须兼容pickle,因为要使用到进程间的通信,所有解释器之间的交换数据必须被序列化
被提交的任务函数不应保留状态或有副作用。除了打印日志之类简单的事情,
一旦启动你不能控制子进程的任何行为,因此最好保持简单和纯洁——函数不要去修改环境。
在Unix上进程池通过调用
fork()
系统调用被创建,
它会克隆Python解释器,包括fork时的所有程序状态。
而在Windows上,克隆解释器时不会克隆状态。
实际的fork操作会在第一次调用 pool.map()
或 pool.submit()
后发生。
当你混合使用进程池和多线程的时候要特别小心。
你应该在创建任何线程之前先创建并激活进程池(比如在程序启动的main线程中创建进程池)。