日志(Logging)

https://farm5.staticflickr.com/4246/35254379756_c9fe23f843_k_d.jpg

日志 模块自2.3版本开始便是Python标准库的一部分。它被简洁的描述在 PEP 282。 众所周知,除了 基础日志指南 部分,该文档并不容易阅读。

loguru 作为替代方案, 提供了像使用 print 语句一样简单的日志打印方法。

日志的两个目的:

  • 诊断日志 记录与应用程序操作相关的日志。例如,用户遇到的报错信息, 可通过搜索诊断日志获得上下文信息。

  • 审计日志 为商业分析而记录的日志。从审计日志中,可提取用户的交易信息, 并结合其他用户资料构成用户报告或者用来优化商业目标。

… 或者打印?

当需要在命令行应用中显示帮助文档时, 打印 是一个相对于日志更好的选择。 而在其他时候,日志总能优于 打印 ,理由如下:

  • 日志事件产生的 日志记录 ,包含清晰可用的诊断信息,如文件名称、路径、函数名和行号等。

  • 包含日志模块的应用,默认可通过根记录器对应用的日志流进行访问,除非您将日志过滤了。

  • 可通过 logging.Logger.setLevel() 方法有选择地记录日志, 或可通过设置 logging.Logger.disabled 属性为 True 来禁用。

库中的日志

日志指南 中含 库日志配置 的说明。由于是 用户 ,而非库来指明如何响应日志事件, 因此这里有一个值得反复说明的忠告:

Note

强烈建议不要向您的库日志中加入除NullHandler外的其它处理程序。

在库中,声明日志的最佳方式是通过 __name__ 全局变量: logging 模块通过点(dot)运算符创建层级排列的日志,因此,用 __name__ 可以避免名字冲突。

以下是一个来自 requests 资源 的最佳实践的例子 —— 把它放置在您的 __init__.py 文件中

import logging
logging.getLogger(__name__).addHandler(logging.NullHandler())

应用程序中的日志

应用程序开发的权威指南, 应用的12要素 ,也在其中一节描述了 日志最佳实践 。它特别强调将日志视为事件流, 并将其发送至由应用环境所处理的标准输出中。

配置日志至少有以下三种方式:

  • 使用INI格式文件:
    • 优点: 使用 logging.config.listen() 函数监听socket,可在运行过程中更新配置

    • 缺点: 通过源码控制日志配置较少( 例如 子类化定制的过滤器或记录器)。

  • 使用字典或JSON格式文件:
    • 优点: 除了可在运行时动态更新,在Python 2.6之后,还可通过 json 模块从其它文件中导入配置。

    • 缺点: 很难通过源码控制日志配置。

  • 使用源码:
    • 优点: 对配置绝对的控制。

    • 缺点: 对配置的更改需要对源码进行修改。

通过INI文件进行配置的例子

我们假设文件名为 logging_config.ini 。关于文件格式的更多细节,请参见 日志指南 中的 日志配置 部分。

[loggers]
keys=root

[handlers]
keys=stream_handler

[formatters]
keys=formatter

[logger_root]
level=DEBUG
handlers=stream_handler

[handler_stream_handler]
class=StreamHandler
level=DEBUG
formatter=formatter
args=(sys.stderr,)

[formatter_formatter]
format=%(asctime)s %(name)-12s %(levelname)-8s %(message)s

然后在源码中调用 logging.config.fileConfig() 方法:

import logging
from logging.config import fileConfig

fileConfig('logging_config.ini')
logger = logging.getLogger()
logger.debug('often makes a very good meal of %s', 'visiting tourists')

通过字典进行配置的例子

Python 2.7中,您可以使用字典实现详细配置。PEP 391 包含了一系列字典配置的强制和 非强制的元素。

import logging
from logging.config import dictConfig

logging_config = dict(
    version = 1,
    formatters = {
        'f': {'format':
              '%(asctime)s %(name)-12s %(levelname)-8s %(message)s'}
        },
    handlers = {
        'h': {'class': 'logging.StreamHandler',
              'formatter': 'f',
              'level': logging.DEBUG}
        },
    root = {
        'handlers': ['h'],
        'level': logging.DEBUG,
        },
)

dictConfig(logging_config)

logger = logging.getLogger()
logger.debug('often makes a very good meal of %s', 'visiting tourists')

通过源码直接配置的例子

import logging

logger = logging.getLogger()
handler = logging.StreamHandler()
formatter = logging.Formatter(
        '%(asctime)s %(name)-12s %(levelname)-8s %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.DEBUG)

logger.debug('often makes a very good meal of %s', 'visiting tourists')