复杂度分析(上)

复杂度分析(上)

@(数据结构与算法)

  1. 数据结构与算法本质上是解决程序运行速度快存储空间省的问题,所以需要通过一个指标,即时间、空间复杂度来衡量这个问题
  2. 为什么需要复杂度分析
  • 程序测试运行结果会受到测试环境的硬件影响
  • 测试结果受数据规模的影响很大
  1. 假设每行代码的运行时间相同,则可得到所有代码的执行时间 T(n) 与每行代码的执行次数成正比。
  2. 代码块:
1 int cal(int n){
2   int sum = 0;                //执行 1 次
3   int i = 1:                  //执行 1 次
4   int j = 1;                  //执行 1 次
5   for(;i <= n;++i){           //执行 n 次
6       j = 1;                  //执行 n 次
7       for(; j <= n; ++j){     //执行 n^2 次
8           sum = sum + i * j;  //执行 n^2 次
9       }
10  }
11 }

故上述代码执行时间为 $ T(n) = (2n^2+2n+3) * time $ 。

  1. 大 $O$ 时间复杂度公式:
    $$ T(n) = O(f(n)) $$
    其中,$T(n)$ 代表代码执行时间;$n$ 表示数据规模大小;$f(n)$ 表示每行代码执行的次数总和,$O$ 表示代码的执行时间 $T(n)$ 与 $f(n)$ 表达式成正比。
    大 $O$ 时间复杂度实际上并不表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,当 $n$ 很大时,公式中的低阶、常量、系数三部分并不做鱼增长趋势,所以都可以忽略。只需要记录一个最大量级就可以了。
    所以上面的 $T(n)$ 的时间复杂度为 $O(n^2)$。
  2. 分析代码时间复杂度的方法:
  • 只关注循环执行次数最多的一段代码。
  • 加法法则:总复杂度等于量级最大的那段代码的复杂度
  • 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
1   int cal(int n){
2       int ret = 0;
3       int i = 1;
4       for (; i<n; ++i){
5       ret = ret + f(i)
6       }
7   }
8   
9   int f(int n){
10      int sum = 0;
11      int i = 1;
12      for(; i < n; ++i){
13          sum = sum + i;
14      }
15      return sum;
16  } 

单独看 cal() 函数,假设 f(n) 只是一个普通的操作,则其 $T1(n) = O(n)$ 。但 f(n) 是一个函数,其时间复杂度是 $T2(n) = O(n)$,所以整个 cal() 函数的时间复杂度就是 ,$T(n) = T1(n)T2(n) = O(nn) = O(n^2)$

  1. 常见的时间复杂度量级:
    《复杂度分析(上)》

可粗路分为两类:多项式量级和非多项式量级,其中,非多项式量级只有两个:$O(2^n)$ 和 $O(n!)$。其中时间复杂度为非多项式量级的算法问题称作 NP(Non-Deterministic Ploynomial,非确定多项式)问题。
当数据规模 n 越来越大是,非多项式量级算法的执行时间会急剧增加,是非常低效的算法。
其他的量级还有 $O(m +n)$,$O(m*n)$

  1. 空间复杂度:类比一下时间复杂度,表示的算法的空间与数据规模之间的增长关系。
1 void print(int n) {
2  int i = 0;
3  int[] a = new int[n];
4  for (i; i <n; ++i) {
5    a[i] = i * i;
6  }

7  for (i = n-1; i >= 0; --i) {
8    print out a[i]
9  }
10}

第 3 行申请了一个大小为 n 的 int 类型数组,剩下的代码没有占用更多的空间,所以整段代码的空间复杂度就是 $O(n)$。
常用的空间复杂度就是 $O(1)$,$O(n)$,$O(n^2)$。
《复杂度分析(上)》

参考自:极客时间《数据结构与算法之美 》专栏

    原文作者:我不
    原文地址: https://www.cnblogs.com/wobu/p/9708515.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞

发表评论

电子邮件地址不会被公开。 必填项已用*标注