Android基础系列-----------GUI系统之WindowManagerService

转自http://blog.csdn.net/luoshengyang

        WindowManagerService,顾名思义,它是是一个窗口管理系统服务,它的主要功能包含如下:
            窗口管理,绘制
            转场动画–Activity切换动画
            Z-ordered的维护,Activity窗口显示前后顺序
            输入法管理
            Token管理
            系统消息收集线程
            系统消息分发线程

       在Android系统中,对系统中的所有窗口进行管理是窗口管理服务WindowManagerService的职责。在Android系统中,同一时刻,只有一个Activity窗口是激活的,但是,对于WindowManagerService服务来说,这并不意味着它每次只需要管理一个Activity窗口,例如,在两个Activity窗口的切换过程中,前后两个Activity窗口实际上都是可见的。即使在只有一个Activity窗口是可见的时候,WindowManagerService服务仍然需要同时管理着多个窗口,这是因为可见的Activity窗口可能还会被设置了壁纸窗口(Wallpaper Winodw)或者弹出了子窗口(Sub Window),以及可能会出现状态栏(Status Bar)以及输入法窗口(Input Method Window),如下图所示。

《Android基础系列-----------GUI系统之WindowManagerService》

Activity窗口及其子窗口、壁纸窗口、输入法窗口和状态栏的位置结构

        因此,WindowManagerService服务是不可以假设同一时刻它只需要管理一个窗口的,它需要通过各个窗口在屏幕上的位置以及大小来决定哪些窗口需要显示的以及要显在哪里,这实际上就是要计算出各个窗口的可见区域。SurfaceFlinger服务在渲染整个屏幕的UI的时候,会对各个窗品的可见性进行计算,因此,WindowManagerService服务只要将它所管理的各个窗品的位置以及大小告诉SurfaceFlinger服务,后者可以帮帮它计算出各个窗口的可见区域了。注意,这里,这里所说的窗口位置包括窗口在X、Y和Z轴的位置。
       WindowManagerService服务大致按照以下方式来控制哪些窗口需要显示的以及要显在哪里:
       1. 每一个Activity窗口的大小都等于屏幕的大小,因此,只要对每一个Activity窗口设置一个不同的Z轴位置,然后就可以使得位于最上面的,即当前被激活的Activity窗口,才是可见的。
       2. 每一个子窗口的Z轴位置都比它的父窗口大,但是大小要比父窗口小,这时候Activity窗口及其所弹出的子窗口都可以同时显示出来。
       3. 对于非全屏Activity窗口来说,它会在屏幕的上方留出一块区域,用来显示状态栏。这块留出来的区域称对于屏幕来说,称为装饰区(decoration),而对于Activity窗口来说,称为内容边衬区(Content Inset)。
       4. 输入法窗口只有在需要的时候才会出现,它同样是出现在屏幕的装饰区或者说Activity窗口的内容边衬区的。
       5. 对于壁纸窗口,它出现需要壁纸的Activity窗口的下方,这时候要求Activity窗口是半透明的,这样就可以将它后面的壁纸窗口一同显示出来。
       6. 两个Activity窗口在切换过程,实际上就是前一个窗口显示退出动画而后一个窗口显示开始动画的过程,而在动画的显示过程,窗口的大小会有一个变化的过程,这样就导致前后两个Activity窗口的大小不再都等于屏幕的大小,因而它们就有可能同时都处于可见的状态。事实上,Activity窗口的切换过程是相当复杂的,因为即将要显示的Activity窗口可能还会被设置一个启动窗口(Starting Window)。一个被设置了启动窗口的Activity窗口要等到它的启动窗口显示了之后才可以显示出来。

       从以上六点就可以看出,窗口在X、Y和Z轴的位置及其大小的计算非常重要,它们共同决定了一个窗口是否是整体可见的,还是部分可见的,或者整体不可见的。在Android系统中,WindowManagerService服务是通过一个实现了WindowManagerPolicy接口的策略类来计算一个窗口的位置和大小的。例如,在Phone平台上,这个策略类就是PhoneWindowManager。这样做的好处就是对于不同的平台实现不同的策略类来达到不同的窗口控制模式。
      从上面的描述就可以看出,WindowManagerService服务除了要与Activity窗口所运行在的应用程序进程打交道之外,还需要与SurfaceFlinger服务以及窗口管理策略类PhoneWindowManager交互,如下图所示。

《Android基础系列-----------GUI系统之WindowManagerService》

下面将主要分析WindowManagerService服务的实现,以及它与SurfaceFlinger服务、PhoneWindowManager策略类的交互过程。

一、WindowManagerService计算Activity窗口大小的过程

        在Android系统中,Activity窗口的大小是由WindowManagerService服务来计算的。WindowManagerService服务会根据屏幕及其装饰区的大小来决定Activity窗口的大小。一个Activity窗口只有知道自己的大小之后,才能对它里面的UI元素进行测量、布局以及绘制。
        一般来说,Activity窗口的大小等于整个屏幕的大小,但是它并不占据着整块屏幕。为了理解这一点,首先分析一下Activity窗口的区域是如何划分的。
        Activity窗口的上方一般会有一个状态栏,用来显示3G信号、电量使用等图标,如下图所示。
《Android基础系列-----------GUI系统之WindowManagerService》

Activity窗口的Content区域示意图        从Activity窗口剔除掉状态栏所占用的区域之后,所得到的区域就称为内容区域(Content Region)。顾名思义,内容区域就是用来显示Activity窗口的内容的。我们再抽象一下,假设Activity窗口的四周都有一块类似状态栏的区域,那么将这些区域剔除之后,得到中间的那一块区域就称为内容区域,而被剔除出来的区域所组成的区域就称为内容边衬区域(Content Insets)。Activity窗口的内容边衬区域可以用一个四元组(content-left, content-top, content-right, content-bottom)来描述,其中,content-left、content-right、content-top、content-bottom分别用来描述内容区域与窗口区域的左右上下边界距离

       Activity窗口有时候需要显示输入法窗口,如下图所示。

《Android基础系列-----------GUI系统之WindowManagerService》

Activity窗口的Visible区域示意图         这时候Activity窗口的内容区域的大小有可能没有发生变化,这取决于它的Soft Input Mode。假设Activity窗口的内容区域没有发生变化,但是它在底部的一些区域被输入法窗口遮挡了,即它在底部的一些内容是不可见的。从Activity窗口剔除掉状态栏和输入法窗口所占用的区域之后,所得到的区域就称为可见区域(Visible Region)。同样,再抽象一下,假设Activity窗口的四周都有一块类似状态栏和输入法窗口的区域,那么将这些区域剔除之后,得到中间的那一块区域就称为可见区域,而被剔除出来的区域所组成的区域就称为可见边衬区域(Visible Insets)。Activity窗口的可见边衬区域可以用一个四元组(visible-left, visible-top, visible-right, visible-bottom)来描述,其中,visible-left、visible-right、visible-top、visible-bottom分别用来描述可见区域与窗口区域的左右上下边界距离。

        在大多数情况下,Activity窗口的内容区域和可见区域的大小是一致的,而状态栏和输入法窗口所占用的区域又称为屏幕装饰区。理解了这些概念之后,就可以推断,WindowManagerService服务实际上就是需要根据屏幕以及可能出现的状态栏和输入法窗口的大小来计算出Activity窗口的整体大小及其内容区域边衬和可见区域边衬的大小。有了这三个数据之后,Activity窗口就可以对它里面的UI元素进行测量、布局以及绘制等操作了。

二、WindowManagerService对窗口的组织方式

        在Android系统中,Activity是以堆栈的形式组织在ActivityManagerService服务中的。与Activity类似,Android系统中的窗口也是以堆栈的形式组织在WindowManagerService服务中的,其中,Z轴位置较低的窗口位于Z轴位置较高的窗口的下面。下面详细分析WindowManagerService服务是如何以堆栈的形式来组织窗口的。
        应用程序进程中的每一个Activity组件在Activity管理服务ActivityManagerService中都对应有一个ActivityRecord对象。Activity管理服务ActivityManagerService中每一个ActivityRecord对象在Window管理服务WindowManagerService中都对应有一个AppWindowToken对象。
        此外,在输入法管理服务InputMethodManagerService中,每一个输入法窗口都对应有一个Binder对象,这个Binder对象在Window管理服务WindowManagerService又对应有一个WindowToken对象。
        与输入法窗口类似,在壁纸管理服务WallpaperManagerService中,每一个壁纸窗口都对应有一个Binder对象,这个Binder对象在Window管理服务WindowManagerService也对应有一个WindowToken对象。
        在Window管理服务WindowManagerService中,无论是AppWindowToken对象,还是WindowToken对象,它们都是用来描述一组有着相同令牌的窗口的,每一个窗口都是通过一个WindowState对象来描述的。例如,一个Activity组件窗口可能有一个启动窗口(Starting Window),还有若干个子窗口,那么这些窗口就会组成一组,并且都是以Activity组件在Window管理服务WindowManagerService中所对应的AppWindowToken对象为令牌的。从抽象的角度来看,就是在Window管理服务WindowManagerService中,每一个令牌(AppWindowToken或者WindowToken)都是用来描述一组窗口(WindowState)的,并且每一个窗口的子窗口也是与它同属于一个组,即都有着相同的令牌。
        上述的窗口组织方式下图所示:

《Android基础系列-----------GUI系统之WindowManagerService》 窗口在WindowManagerService服务中的组织方式

        其中,Activity Stack是在ActivityManagerService服务中创建的,Token List和Window Stack是在WindowManagerService中创建的,而Binder for IM和Binder for WP分别是在InputMethodManagerService服务和WallpaperManagerService服务中创建的,用来描述一个输入法窗口和一个壁纸窗口。

        图中的对象的对应关系如下所示:

       1. ActivityRecord-J对应于AppWindowToken-J,后者描述的一组窗口是{WindowState-A, WindowState-B, WindowState-B-1},其中, WindowState-B-1是WindowState-B的子窗口。

       2. ActivityRecord-K对应于AppWindowToken-K,后者描述的一组窗口是{WindowState-C, WindowState-C-1, WindowState-D, WindowState-D-1},其中, WindowState-C-1是WindowState-C的子窗口,WindowState-D-1是WindowState-D的子窗口。

       3. ActivityRecord-N对应于AppWindowToken-N,后者描述的一组窗口是{WindowState-E},其中, WindowState-E是系统当前激活的Activity窗口。

       4. Binder for IM对应于WindowToken-I,后者描述的一组窗口是{WindowState-I},其中, WindowState-I是WindowState-E的输入法窗口。

       5. Binder for WP对应于WindowToken-W,后者描述的一组窗口是{WindowState-W},其中, WindowState-W是WindowState-E的壁纸窗口。

       从图中还可以知道,Window Stack中的WindowState是按照它们所描述的窗口的Z轴位置从低到高排列的。

三、WindowManagerService计算窗口Z轴位置的过程

        在Android系统中,无论是普通的Activity窗口,还是特殊的输入法窗口和壁纸窗口,它们都是被WindowManagerService服务组织在一个窗口堆栈中的,其中,Z轴位置较大的窗口排列在Z轴位置较小的窗口的上面。有了这个窗口堆栈之后,WindowManagerService服务就可以按照一定的规则计算每一个窗口的Z轴位置了,基于窗口堆栈来计算窗口的Z轴位置是比较有意思的。按照一般的理解,应该是先计算好窗口的Z轴位置,然后再按照Z轴位置的大小来将各个窗口排列在堆栈中。但是,事实上,窗口是按照其它规则排列在堆栈中。这些规则与窗口的类型、创建顺序和运行状态等有关。例如,状态栏窗口总是位于堆栈的顶端,输入法窗口总是位于需要输入法的窗口的上面,而壁纸窗口总是位于需要显示壁纸的窗口的下面。又如,当一个Activity组件从后台激活到前台时,与它所对应的窗口就会被相应地移动到窗口堆栈的上面去。

        窗口的UI最终是需要通过SurfaceFlinger服务来统一渲染的,而SurfaceFlinger服务在渲染窗口的UI之前,需要计算基于各个窗口的Z轴位置来计算它们的可见区域。因此,WindowManagerService服务计算好每一个窗口的Z轴位置之后,还需要将它们设置到SurfaceFlinger服务中去,以便SurfaceFlinger服务可以正确地渲染每一个窗口的UI。

四、WindowManagerService显示Activity组件的启动窗口(Starting Window)的过程

        在Android系统中,Activity组件在启动之后,并且在它的窗口显示出来之前,可以显示一个启动窗口。这个启动窗口可以看作是Activity组件的预览窗口,是由WindowManagerService服务统一管理的,即由WindowManagerService服务负责启动和结束。

        Activity组件的启动窗口是由ActivityManagerService服务来决定是否要显示的。如果需要显示,那么ActivityManagerService服务就会通知WindowManagerService服务来为正在启动的Activity组件显示一个启动窗口,而WindowManagerService服务又是通过窗口管理策略类PhoneWindowManager来创建这个启动窗口的。这个过程如下图所示。

《Android基础系列-----------GUI系统之WindowManagerService》
Activity窗口的启动窗品的创建过程

        窗口管理策略类PhoneWindowManager创建完成Activity组件的启动窗口之后,就会请求WindowManagerService服务将该启动窗口显示出来。当Activity组件启动完成,并且它的窗口也显示出来的时候,WindowManagerService服务就会结束显示它的启动窗口。

        注意,Activity组件的启动窗口是由ActivityManagerService服务来控制是否显示的,也就是说,Android应用程序是无法决定是否要要Activity组件显示启动窗口的。

    原文作者:FreeQuantum
    原文地址: https://blog.csdn.net/zhoupenglei/article/details/46455499
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞