Binder死亡通知机制之linkToDeath

基于Android 6.0源码, 涉及相关源码

frameworks/base/core/java/android/os/Binder.java
frameworks/base/core/jni/android_util_Binder.cpp
frameworks/native/libs/binder/BpBinder.cpp

一. 概述

死亡通知是为了让Bp端(客户端进程)进能知晓Bn端(服务端进程)的生死情况,当Bn端进程死亡后能通知到Bp端。

  • 定义:AppDeathRecipient是继承IBinder::DeathRecipient类,主要需要实现其binderDied()来进行死亡通告。
  • 注册:binder->linkToDeath(AppDeathRecipient)是为了将AppDeathRecipient死亡通知注册到Binder上。

Bp端只需要覆写binderDied()方法,实现一些后尾清除类的工作,则在Bn端死掉后,会回调binderDied()进行相应处理。

1.1 实例说明

public final class ActivityManagerService {
    private final boolean attachApplicationLocked(IApplicationThread thread, int pid) {
        ...
        //创建IBinder.DeathRecipient子类对象
        AppDeathRecipient adr = new AppDeathRecipient(app, pid, thread);
        //建立binder死亡回调
        thread.asBinder().linkToDeath(adr, 0);
        app.deathRecipient = adr;
        ...
        //取消binder死亡回调
        app.unlinkDeathRecipient();
    }

    private final class AppDeathRecipient implements IBinder.DeathRecipient {
        ...
        public void binderDied() {
            synchronized(ActivityManagerService.this) {
                appDiedLocked(mApp, mPid, mAppThread, true);
            }
        }
    }
}

前面涉及到linkToDeath和unlinkToDeath方法,实现如下:

[-> Binder.java]

public class Binder implements IBinder {
    public void linkToDeath(DeathRecipient recipient, int flags) {
    }

    public boolean unlinkToDeath(DeathRecipient recipient, int flags) {
        return true;
    }
}

final class BinderProxy implements IBinder {
    public native void linkToDeath(DeathRecipient recipient, int flags)
            throws RemoteException;
    public native boolean unlinkToDeath(DeathRecipient recipient, int flags);
}

可见,以上两个方法:

  • 当为Binder服务端,则相应的两个方法实现为空,没有实际功能;
  • 当为BinderProxy代理端,则调用native方法来实现相应功能,这是真实的使用场景。

二. 上层注册死亡通知

BinderProxy调用linkToDeath()方法是一个native方法, 通过jni进入如下方法:

2.1 linkToDeath

[-> android_util_Binder.cpp]

static void android_os_BinderProxy_linkToDeath(JNIEnv* env, jobject obj,
        jobject recipient, jint flags)
{
    if (recipient == NULL) {
        jniThrowNullPointerException(env, NULL);
        return;
    }

    //获取BinderProxy.mObject成员变量值, 即BpBinder对象
    IBinder* target = (IBinder*)env->GetLongField(obj, gBinderProxyOffsets.mObject);
    ...

    //只有Binder代理对象才会进入该分支
    if (!target->localBinder()) {
        DeathRecipientList* list = (DeathRecipientList*)
                env->GetLongField(obj, gBinderProxyOffsets.mOrgue);
        //创建JavaDeathRecipient对象[见小节2.1.1]
        sp<JavaDeathRecipient> jdr = new JavaDeathRecipient(env, recipient, list);
        //建立死亡通知[见小节2.2]
        status_t err = target->linkToDeath(jdr, NULL, flags);
        if (err != NO_ERROR) {
            //添加死亡通告失败, 则从list移除引用[见小节2.1.3]
            jdr->clearReference();
            signalExceptionForError(env, obj, err, true /*canThrowRemoteException*/);
        }
    }
}

过程说明:

  • 获取DeathRecipientList: 其成员变量mList记录该BinderProxy的JavaDeathRecipient列表信息;
    • 一个BpBinder可以注册多个死亡回调
  • 创建JavaDeathRecipient: 继承于IBinder::DeathRecipient

2.1.1 JavaDeathRecipient

[-> android_util_Binder.cpp]

class JavaDeathRecipient : public IBinder::DeathRecipient
{
public:
    JavaDeathRecipient(JNIEnv* env, jobject object, const sp<DeathRecipientList>& list)
        : mVM(jnienv_to_javavm(env)), mObject(env->NewGlobalRef(object)),
          mObjectWeak(NULL), mList(list)
    {
        //将当前对象sp添加到列表DeathRecipientList
        list->add(this);
        android_atomic_inc(&gNumDeathRefs);
        incRefsCreated(env); //[见小节2.1.2]
    }
}

该方法主要功能:

  • 通过env->NewGlobalRef(object),为recipient创建相应的全局引用,并保存到mObject成员变量;
  • 将当前对象JavaDeathRecipient的强指针sp添加到DeathRecipientList;

2.1.2 incRefsCreated

[-> android_util_Binder.cpp]

static void incRefsCreated(JNIEnv* env)
{
    int old = android_atomic_inc(&gNumRefsCreated);
    if (old == 2000) {
        android_atomic_and(0, &gNumRefsCreated);
        //触发forceGc
        env->CallStaticVoidMethod(gBinderInternalOffsets.mClass,
                gBinderInternalOffsets.mForceGc);
    }
}

该方法的主要是增加引用计数incRefsCreated,每计数增加2000则执行一次forceGc;

会触发调用incRefsCreated()的场景有:

  • JavaBBinder对象创建过程
  • JavaDeathRecipient对象创建过程;
  • javaObjectForIBinder()方法:将native层BpBinder对象转换为Java层BinderProxy对象的过程;

2.1.3 clearReference

[-> android_util_Binder.cpp ::JavaDeathRecipient]

void clearReference()
 {
     sp<DeathRecipientList> list = mList.promote();
     if (list != NULL) {
         list->remove(this); //从列表中移除引用
     }
 }

清除引用,将JavaDeathRecipient从DeathRecipientList列表中移除.

2.2 linkToDeath

[-> BpBinder.cpp]

status_t BpBinder::linkToDeath(
    const sp<DeathRecipient>& recipient, void* cookie, uint32_t flags)
{
    Obituary ob;
    ob.recipient = recipient; //该对象为JavaDeathRecipient
    ob.cookie = cookie; // cookie=NULL
    ob.flags = flags; // flags=0
    {
        AutoMutex _l(mLock);
        if (!mObitsSent) { //没有执行过sendObituary,则进入该方法
            if (!mObituaries) {
                mObituaries = new Vector<Obituary>;
                if (!mObituaries) {
                    return NO_MEMORY;
                }
                getWeakRefs()->incWeak(this);
                IPCThreadState* self = IPCThreadState::self();
                //[见小节2.3]
                self->requestDeathNotification(mHandle, this);
                //[见小节2.4]
                self->flushCommands();
            }
            //将新创建的Obituary添加到mObituaries
            ssize_t res = mObituaries->add(ob);
            return res >= (ssize_t)NO_ERROR ? (status_t)NO_ERROR : res;
        }
    }
    return DEAD_OBJECT;
}

2.2.1 DeathRecipient关系图

《Binder死亡通知机制之linkToDeath》

Java层的BinderProxy.mOrgue指向DeathRecipientList,而DeathRecipientList记录JavaDeathRecipient对象。

2.3 requestDeathNotification

[-> IPCThreadState.cpp]

status_t IPCThreadState::requestDeathNotification(int32_t handle, BpBinder* proxy)
{
    mOut.writeInt32(BC_REQUEST_DEATH_NOTIFICATION);
    mOut.writeInt32((int32_t)handle);
    mOut.writePointer((uintptr_t)proxy);
    return NO_ERROR;
}

进入Binder driver后, 直接调用后进入binder_thread_write, 处理BC_REQUEST_DEATH_NOTIFICATION命令

2.4 flushCommands

[-> IPCThreadState.cpp]

void IPCThreadState::flushCommands()
{
    if (mProcess->mDriverFD <= 0)
        return;
    talkWithDriver(false);
}

flushCommands就是把命令向驱动发出,此处参数为false,则不会阻塞等待读。 向Kernel层的binder driver发送BC_REQUEST_DEATH_NOTIFICATION命令,经过ioctl执行到 binder_ioctl_write_read()方法。

三. Kernel层注册通知

3.1 binder_ioctl_write_read

[-> kernel/drivers/android/binder.c]

static int binder_ioctl_write_read(struct file *filp,
                unsigned int cmd, unsigned long arg,
                struct binder_thread *thread)
{
    int ret = 0;
    struct binder_proc *proc = filp->private_data;
    void __user *ubuf = (void __user *)arg;
    struct binder_write_read bwr;

    if (copy_from_user(&bwr, ubuf, sizeof(bwr))) { //把用户空间数据ubuf拷贝到bwr
        ret = -EFAULT;
        goto out;
    }
    if (bwr.write_size > 0) { //此时写缓存有数据【见小节3.2】
        ret = binder_thread_write(proc, thread,
                  bwr.write_buffer, bwr.write_size, &bwr.write_consumed);
         ...
    }

    if (bwr.read_size > 0) { //此时读缓存没有数据
      ...
    }

    if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { //将内核数据bwr拷贝到用户空间ubuf
        ret = -EFAULT;
        goto out;
    }
out:
    return ret;
}

3.2 binder_thread_write

[-> kernel/drivers/android/binder.c]

static int binder_thread_write(struct binder_proc *proc,
      struct binder_thread *thread,
      binder_uintptr_t binder_buffer, size_t size,
      binder_size_t *consumed)
{
  uint32_t cmd;
  //proc, thread都是指当前发起端进程的信息
  struct binder_context *context = proc->context;
  void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
  void __user *ptr = buffer + *consumed; 
  void __user *end = buffer + size;
  while (ptr < end && thread->return_error == BR_OK) {
    get_user(cmd, (uint32_t __user *)ptr); //获取BC_REQUEST_DEATH_NOTIFICATION
    ptr += sizeof(uint32_t);
    switch (cmd) {
        case BC_REQUEST_DEATH_NOTIFICATION:{ //注册死亡通知
            uint32_t target;
            void __user *cookie;
            struct binder_ref *ref;
            struct binder_ref_death *death;

            get_user(target, (uint32_t __user *)ptr); //获取target
            ptr += sizeof(uint32_t);
            get_user(cookie, (void __user * __user *)ptr); //获取BpBinder
            ptr += sizeof(void *);

            ref = binder_get_ref(proc, target); //拿到目标服务的binder_ref

            if (cmd == BC_REQUEST_DEATH_NOTIFICATION) {
                //native Bp可注册多个,但Kernel只允许注册一个死亡通知
                if (ref->death) {
                    break; 
                }
                death = kzalloc(sizeof(*death), GFP_KERNEL);

                INIT_LIST_HEAD(&death->work.entry);
                death->cookie = cookie; //BpBinder指针
                ref->death = death;
                //当目标binder服务所在进程已死,则直接发送死亡通知。这是非常规情况
                if (ref->node->proc == NULL) { 
                    ref->death->work.type = BINDER_WORK_DEAD_BINDER;
                    //当前线程为binder线程,则直接添加到当前线程的todo队列. 
                    if (thread->looper & (BINDER_LOOPER_STATE_REGISTERED | BINDER_LOOPER_STATE_ENTERED)) {
                        list_add_tail(&ref->death->work.entry, &thread->todo);
                    } else {
                        list_add_tail(&ref->death->work.entry, &proc->todo);
                        wake_up_interruptible(&proc->wait);
                    }
                }
            } else {
                ...
            }
        } break;
      case ...;
    }
    *consumed = ptr - buffer;
  }
}

该方法在处理BC_REQUEST_DEATH_NOTIFICATION过程,正好遇到对端目标binder服务所在进程已死的情况, 向todo队列增加BINDER_WORK_DEAD_BINDER事务,直接发送死亡通知,但这属于非常规情况。

更常见的场景是binder服务所在进程死亡后,会调用binder_release方法, 然后调用binder_node_release.这个过程便会发出死亡通知的回调.

四. 触发死亡通知

当Binder服务所在进程死亡后,会释放进程相关的资源,Binder也是一种资源。 binder_open打开binder驱动/dev/binder,这是字符设备,获取文件描述符。在进程结束的时候会有一个关闭文件系统的过程中会调用驱动close方法,该方法相对应的是release()方法。当binder的fd被释放后,此处调用相应的方法是binder_release().

但并不是每个close系统调用都会触发调用release()方法. 只有真正释放设备数据结构才调用release(),内核维持一个文件结构被使用多少次的计数,即便是应用程序没有明显地关闭它打开的文件也适用: 内核在进程exit()时会释放所有内存和关闭相应的文件资源, 通过使用close系统调用最终也会release binder.

4.1 release

[-> binder.c]

static const struct file_operations binder_fops = {
  .owner = THIS_MODULE,
  .poll = binder_poll,
  .unlocked_ioctl = binder_ioctl,
  .compat_ioctl = binder_ioctl,
  .mmap = binder_mmap,
  .open = binder_open,
  .flush = binder_flush,
  .release = binder_release, //对应于release的方法
};

4.2 binder_release

static int binder_release(struct inode *nodp, struct file *filp)
{
  struct binder_proc *proc = filp->private_data;
  debugfs_remove(proc->debugfs_entry);
  //[见小节4.3]
  binder_defer_work(proc, BINDER_DEFERRED_RELEASE);
  return 0;
}

4.3 binder_defer_work

static void binder_defer_work(struct binder_proc *proc, enum binder_deferred_state defer)
{
  mutex_lock(&binder_deferred_lock); //获取锁
  //添加BINDER_DEFERRED_RELEASE
  proc->deferred_work |= defer; 
  if (hlist_unhashed(&proc->deferred_work_node)) {
    hlist_add_head(&proc->deferred_work_node, &binder_deferred_list);
    //向工作队列添加binder_deferred_work [见小节4.4]
    queue_work(binder_deferred_workqueue, &binder_deferred_work);
  }
  mutex_unlock(&binder_deferred_lock); //释放锁
}

4.4 queue_work

//全局工作队列
static struct workqueue_struct *binder_deferred_workqueue;

static int __init binder_init(void)
{
  int ret;
  //创建了名叫“binder”的工作队列
  binder_deferred_workqueue = create_singlethread_workqueue("binder");
  if (!binder_deferred_workqueue)
    return -ENOMEM;
  ...
}

device_initcall(binder_init);

关于binder_deferred_work的定义:

static DECLARE_WORK(binder_deferred_work, binder_deferred_func);

#define DECLARE_WORK(n, f)            \
  struct work_struct n = __WORK_INITIALIZER(n, f)

#define __WORK_INITIALIZER(n, f) {          \
  .data = WORK_DATA_STATIC_INIT(),        \
  .entry  = { &(n).entry, &(n).entry },        \
  .func = (f),              \
  __WORK_INIT_LOCKDEP_MAP(#n, &(n))        \
  }

在Binder设备驱动初始化的过程执行binder_init()方法中,调用 create_singlethread_workqueue(“binder”),创建了名叫“binder”的工作队列(workqueue)。 workqueue是kernel提供的一种实现简单而有效的内核线程机制,可延迟执行任务。

此处binder_deferred_work的func为binder_deferred_func,接下来看该方法。

4.5 binder_deferred_func

static void binder_deferred_func(struct work_struct *work)
{
  struct binder_proc *proc;
  struct files_struct *files;

  int defer;
  do {
    mutex_lock(&binder_main_lock); //获取binder_main_lock
    mutex_lock(&binder_deferred_lock);
    preempt_disable(); //禁止CPU抢占
    if (!hlist_empty(&binder_deferred_list)) {
      proc = hlist_entry(binder_deferred_list.first,
          struct binder_proc, deferred_work_node);
      hlist_del_init(&proc->deferred_work_node);
      defer = proc->deferred_work;
      proc->deferred_work = 0;
    } else {
      proc = NULL;
      defer = 0;
    }
    mutex_unlock(&binder_deferred_lock);

    files = NULL;
    if (defer & BINDER_DEFERRED_PUT_FILES) {
      files = proc->files;
      if (files)
        proc->files = NULL;
    }

    if (defer & BINDER_DEFERRED_FLUSH)
      binder_deferred_flush(proc);

    if (defer & BINDER_DEFERRED_RELEASE)
      binder_deferred_release(proc); //[见小节4.6]

    mutex_unlock(&binder_main_lock); //释放锁
    preempt_enable_no_resched(); 
    if (files)
      put_files_struct(files);
  } while (proc);
}

可见,binder_release最终调用的是binder_deferred_release; 同理,binder_flush最终调用的是binder_deferred_flush。

4.6 binder_deferred_release

static void binder_deferred_release(struct binder_proc *proc)
{
  struct binder_transaction *t;
  struct rb_node *n;
  int threads, nodes, incoming_refs, outgoing_refs, buffers,
    active_transactions, page_count;

  hlist_del(&proc->proc_node); //删除proc_node节点

  if (binder_context_mgr_node && binder_context_mgr_node->proc == proc) {
    binder_context_mgr_node = NULL;
  }

  //释放binder_thread[见小节4.6.1]
  threads = 0;
  active_transactions = 0;
  while ((n = rb_first(&proc->threads))) {
    struct binder_thread *thread;
    thread = rb_entry(n, struct binder_thread, rb_node);
    threads++;
    active_transactions += binder_free_thread(proc, thread);
  }

  //释放binder_node [见小节4.6.2]
  nodes = 0;
  incoming_refs = 0;
  while ((n = rb_first(&proc->nodes))) {
    struct binder_node *node;
    node = rb_entry(n, struct binder_node, rb_node);
    nodes++;
    rb_erase(&node->rb_node, &proc->nodes);
    incoming_refs = binder_node_release(node, incoming_refs);
  }

  //释放binder_ref [见小节4.6.3]
  outgoing_refs = 0;
  while ((n = rb_first(&proc->refs_by_desc))) {
    struct binder_ref *ref;

    ref = rb_entry(n, struct binder_ref, rb_node_desc);
    outgoing_refs++;
    binder_delete_ref(ref);
  }
  
  //释放binder_work [见小节4.6.4]
  binder_release_work(&proc->todo);
  binder_release_work(&proc->delivered_death);

  buffers = 0;
  while ((n = rb_first(&proc->allocated_buffers))) {
    struct binder_buffer *buffer;
    buffer = rb_entry(n, struct binder_buffer, rb_node);

    t = buffer->transaction;
    if (t) {
      t->buffer = NULL;
      buffer->transaction = NULL;
    }
    //释放binder_buf [见小节4.6.5]
    binder_free_buf(proc, buffer);
    buffers++;
  }

  binder_stats_deleted(BINDER_STAT_PROC);

  page_count = 0;
  if (proc->pages) {
    int i;

    for (i = 0; i < proc->buffer_size / PAGE_SIZE; i++) {
      void *page_addr;
      if (!proc->pages[i])
        continue;

      page_addr = proc->buffer + i * PAGE_SIZE;
      unmap_kernel_range((unsigned long)page_addr, PAGE_SIZE);
      __free_page(proc->pages[i]);
      page_count++;
    }
    kfree(proc->pages);
    vfree(proc->buffer);
  }
  put_task_struct(proc->tsk);
  kfree(proc);
}

此处proc是来自Bn端的binder_proc

4.6.1 binder_free_thread

static int binder_free_thread(struct binder_proc *proc,
            struct binder_thread *thread)
{
  struct binder_transaction *t;
  struct binder_transaction *send_reply = NULL;
  int active_transactions = 0;

  rb_erase(&thread->rb_node, &proc->threads);
  t = thread->transaction_stack;
  if (t && t->to_thread == thread)
    send_reply = t; //服务端
  while (t) {
    active_transactions++;
    if (t->to_thread == thread) {
      t->to_proc = NULL;
      t->to_thread = NULL;
      if (t->buffer) {
        t->buffer->transaction = NULL;
        t->buffer = NULL;
      }
      t = t->to_parent;
    } else if (t->from == thread) {
      t->from = NULL;
      t = t->from_parent;
    }
  }
  
  //将发起方线程的return_error值设置为BR_DEAD_REPLY【见小节4.6.4.1】
  if (send_reply)
    binder_send_failed_reply(send_reply, BR_DEAD_REPLY);
  //[见小节4.6.4]
  binder_release_work(&thread->todo);
  kfree(thread);
  binder_stats_deleted(BINDER_STAT_THREAD);
  return active_transactions;
}

4.6.2 binder_node_release

static int binder_node_release(struct binder_node *node, int refs)
{
  struct binder_ref *ref;
  int death = 0;

  list_del_init(&node->work.entry);
  //[见小节4.6.4]
  binder_release_work(&node->async_todo);

  if (hlist_empty(&node->refs)) {
    kfree(node); //引用为空,则直接删除节点
    binder_stats_deleted(BINDER_STAT_NODE);
    return refs;
  }

  node->proc = NULL;
  node->local_strong_refs = 0;
  node->local_weak_refs = 0;
  hlist_add_head(&node->dead_node, &binder_dead_nodes);

  hlist_for_each_entry(ref, &node->refs, node_entry) {
    refs++;
    if (!ref->death)
      continue;
    death++;

    if (list_empty(&ref->death->work.entry)) {
      //添加BINDER_WORK_DEAD_BINDER事务到todo队列 [见小节5.1]
      ref->death->work.type = BINDER_WORK_DEAD_BINDER;
      list_add_tail(&ref->death->work.entry, &ref->proc->todo);
      wake_up_interruptible(&ref->proc->wait);
    } 
  }
  return refs;
}

该方法会遍历该binder_node所有的binder_ref, 当存在binder死亡通知,则向相应的binder_ref 所在进程的todo队列添加BINDER_WORK_DEAD_BINDER事务并唤醒处于proc->wait的binder线程,下一步行动见[见小节5.1]。

4.6.3 binder_delete_ref

static void binder_delete_ref(struct binder_ref *ref)
{
  rb_erase(&ref->rb_node_desc, &ref->proc->refs_by_desc);
  rb_erase(&ref->rb_node_node, &ref->proc->refs_by_node);
  if (ref->strong)
    binder_dec_node(ref->node, 1, 1);
  hlist_del(&ref->node_entry);
  binder_dec_node(ref->node, 0, 1);
  if (ref->death) {
    list_del(&ref->death->work.entry);
    kfree(ref->death);
    binder_stats_deleted(BINDER_STAT_DEATH);
  }
  kfree(ref);
  binder_stats_deleted(BINDER_STAT_REF);
}

4.6.4 binder_release_work

static void binder_release_work(struct list_head *list)
{
  struct binder_work *w;
  while (!list_empty(list)) {
    w = list_first_entry(list, struct binder_work, entry);
    list_del_init(&w->entry); //删除binder_work
    switch (w->type) {
    case BINDER_WORK_TRANSACTION: {
      struct binder_transaction *t;
      t = container_of(w, struct binder_transaction, work);
      if (t->buffer->target_node &&
          !(t->flags & TF_ONE_WAY)) {
        //发送failed回复【见小节4.6.4.1】
        binder_send_failed_reply(t, BR_DEAD_REPLY);
      } else {
        t->buffer->transaction = NULL;
        kfree(t);
        binder_stats_deleted(BINDER_STAT_TRANSACTION);
      }
    } break;
    
    case BINDER_WORK_TRANSACTION_COMPLETE: {
      kfree(w);
      binder_stats_deleted(BINDER_STAT_TRANSACTION_COMPLETE);
    } break;
    
    case BINDER_WORK_DEAD_BINDER_AND_CLEAR:
    case BINDER_WORK_CLEAR_DEATH_NOTIFICATION: {
      struct binder_ref_death *death;
      death = container_of(w, struct binder_ref_death, work);
      kfree(death);
      binder_stats_deleted(BINDER_STAT_DEATH);
    } break;
    
    default:
      break;
    }
  }

}
4.6.4.1 binder_send_failed_reply
static void binder_send_failed_reply(struct binder_transaction *t,
             uint32_t error_code)
{
  struct binder_thread *target_thread;
  struct binder_transaction *next;

  while (1) {
    target_thread = t->from;
    if (target_thread) {
      if (target_thread->return_error != BR_OK &&
         target_thread->return_error2 == BR_OK) {
        target_thread->return_error2 =
          target_thread->return_error;
        target_thread->return_error = BR_OK;
      }
      if (target_thread->return_error == BR_OK) {
        binder_pop_transaction(target_thread, t);
        //设置错误的返回码,并唤醒等待线程
        target_thread->return_error = error_code;
        wake_up_interruptible(&target_thread->wait);
      }
      return;
    }
    next = t->from_parent;
    binder_pop_transaction(target_thread, t);
    if (next == NULL) {
      return;
    }
    t = next;
  }
}  

4.6.5 binder_free_buf

static void binder_free_buf(struct binder_proc *proc,
          struct binder_buffer *buffer)
{
  size_t size, buffer_size;
  buffer_size = binder_buffer_size(proc, buffer);

  size = ALIGN(buffer->data_size, sizeof(void *)) +
    ALIGN(buffer->offsets_size, sizeof(void *));

  if (buffer->async_transaction) {
    proc->free_async_space += size + sizeof(struct binder_buffer);
  }

  binder_update_page_range(proc, 0,
    (void *)PAGE_ALIGN((uintptr_t)buffer->data),
    (void *)(((uintptr_t)buffer->data + buffer_size) & PAGE_MASK),
    NULL);
  rb_erase(&buffer->rb_node, &proc->allocated_buffers);
  buffer->free = 1;
  if (!list_is_last(&buffer->entry, &proc->buffers)) {
    struct binder_buffer *next = list_entry(buffer->entry.next,
            struct binder_buffer, entry);

    if (next->free) {
      rb_erase(&next->rb_node, &proc->free_buffers);
      binder_delete_free_buffer(proc, next);
    }
  }
  if (proc->buffers.next != &buffer->entry) {
    struct binder_buffer *prev = list_entry(buffer->entry.prev,
            struct binder_buffer, entry);

    if (prev->free) {
      binder_delete_free_buffer(proc, buffer);
      rb_erase(&prev->rb_node, &proc->free_buffers);
      buffer = prev;
    }
  }
  binder_insert_free_buffer(proc, buffer);
}

4.6.6 小结

binder_deferred_release的主要工作有:

  1. binder_free_thread: proc->threads所有线程
    • binder_send_failed_reply(send_reply, BR_DEAD_REPLY):将发起方线程的return_error值设置为BR_DEAD_REPLY,让其直接返回;
  2. binder_node_release: proc->nodes所有节点
    • binder_release_work(&node->async_todo)
    • node->refs的所有死亡回调
  3. binder_delete_ref: proc->refs_by_desc所有引用
    • 清除引用
  4. binder_release_work: proc->todo, proc->delivered_death
    • binder_send_failed_reply(t, BR_DEAD_REPLY)
  5. binder_free_buf: proc->allocated_buffers所有已分配buffer
    • 释放已分配的buffer
  6. __free_page: proc->pages所有物理内存页

不论是binder线程正在处理的事务,还是位于进程todo队列的事务,当进程被杀后,则会立马通知请求发起方来结束请求。

五. 处理死亡通知

前面[小节4.6.2] binder_node_release的过程会向BINDER_WORK_DEAD_BINDER事务并唤醒处于proc->wait的binder线程。

5.1 binder_thread_read

static int binder_thread_read(struct binder_proc *proc,
                  struct binder_thread *thread,
                  binder_uintptr_t binder_buffer, size_t size,
                  binder_size_t *consumed, int non_block)
    ...
    //唤醒等待中的binder线程
    wait_event_freezable_exclusive(proc->wait, binder_has_proc_work(proc, thread));
    binder_lock(__func__); //加锁

    if (wait_for_proc_work)
        proc->ready_threads--; //空闲的binder线程减1
    thread->looper &= ~BINDER_LOOPER_STATE_WAITING;

    while (1) {
        uint32_t cmd;
        struct binder_transaction_data tr;
        struct binder_work *w;
        struct binder_transaction *t = NULL;

        //从todo队列拿出前面放入的binder_work, 此时type为BINDER_WORK_DEAD_BINDER
        if (!list_empty(&thread->todo)) {
            w = list_first_entry(&thread->todo, struct binder_work,
                         entry);
        } else if (!list_empty(&proc->todo) && wait_for_proc_work) {
            w = list_first_entry(&proc->todo, struct binder_work,
                         entry);
        }

        switch (w->type) {
            case BINDER_WORK_DEAD_BINDER: {
              struct binder_ref_death *death;
              uint32_t cmd;

              death = container_of(w, struct binder_ref_death, work);
              if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION)
                  ...
              else
                  cmd = BR_DEAD_BINDER; //进入此分支
              put_user(cmd, (uint32_t __user *)ptr);//拷贝到用户空间[见小节5.2]
              ptr += sizeof(uint32_t);

              //此处的cookie是前面传递的BpBinder
              put_user(death->cookie, (binder_uintptr_t __user *)ptr);
              ptr += sizeof(binder_uintptr_t);

              if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION) {
                  ...
              } else
                  //把该work加入到delivered_death队列
                  list_move(&w->entry, &proc->delivered_death);
              if (cmd == BR_DEAD_BINDER)
                  goto done;
            } break;
        }
    }
    ...
    return 0;
}

将命令BR_DEAD_BINDER写到用户空间,此时用户空间执行过程:

5.2 IPC.getAndExecuteCommand

status_t IPCThreadState::getAndExecuteCommand()
{
    status_t result;
    int32_t cmd;

    result = talkWithDriver(); //该Binder Driver进行交互
    if (result >= NO_ERROR) {
        size_t IN = mIn.dataAvail();
        if (IN < sizeof(int32_t)) return result;
        cmd = mIn.readInt32(); //读取命令

        pthread_mutex_lock(&mProcess->mThreadCountLock);
        mProcess->mExecutingThreadsCount++;
        pthread_mutex_unlock(&mProcess->mThreadCountLock);

        result = executeCommand(cmd); //【见小节5.3】

        pthread_mutex_lock(&mProcess->mThreadCountLock);
        mProcess->mExecutingThreadsCount--;
        pthread_cond_broadcast(&mProcess->mThreadCountDecrement);
        pthread_mutex_unlock(&mProcess->mThreadCountLock);

        set_sched_policy(mMyThreadId, SP_FOREGROUND);
    }
    return result;
}

5.3 IPC.executeCommand

status_t IPCThreadState::executeCommand(int32_t cmd)
{
    BBinder* obj;
    RefBase::weakref_type* refs;
    status_t result = NO_ERROR;

    switch ((uint32_t)cmd) {
      case BR_DEAD_BINDER:
      {
          BpBinder *proxy = (BpBinder*)mIn.readPointer();
          proxy->sendObituary(); //[见小节5.4]
          mOut.writeInt32(BC_DEAD_BINDER_DONE);
          mOut.writePointer((uintptr_t)proxy);
      } break;
      ...
    }
    ...
    return result;
}

同一个bp端即便注册多次死亡通知,但只会发送一次死亡回调。

5.4 Bp.sendObituary

void BpBinder::sendObituary()
{
    mAlive = 0;
    if (mObitsSent) return;

    mLock.lock();
    Vector<Obituary>* obits = mObituaries;
    if(obits != NULL) {
        IPCThreadState* self = IPCThreadState::self();
        //清空死亡通知[见小节6.2]
        self->clearDeathNotification(mHandle, this);
        self->flushCommands();
        mObituaries = NULL;
    }
    mObitsSent = 1;
    mLock.unlock();

    if (obits != NULL) {
        const size_t N = obits->size();
        for (size_t i=0; i<N; i++) {
            //发送死亡通知 [见小节5.5]
            reportOneDeath(obits->itemAt(i));
        }
        delete obits;
    }
}

5.5 reportOneDeath

void BpBinder::reportOneDeath(const Obituary& obit)
{
    //将弱引用提升到sp
    sp<DeathRecipient> recipient = obit.recipient.promote();
    if (recipient == NULL) return;
    //回调死亡通知的方法
    recipient->binderDied(this);
}

本文开头的实例传递的是AppDeathRecipient,那么回调如下方法。

5.6 binderDied

private final class AppDeathRecipient implements IBinder.DeathRecipient {
    ...
    public void binderDied() {
        synchronized(ActivityManagerService.this) {
            appDiedLocked(mApp, mPid, mAppThread, true);
        }
    }
}

六. unlinkToDeath

6.1 unlinkToDeath

status_t BpBinder::unlinkToDeath(
    const wp<DeathRecipient>& recipient, void* cookie, uint32_t flags,
    wp<DeathRecipient>* outRecipient)
{
    AutoMutex _l(mLock);
    if (mObitsSent) {
        return DEAD_OBJECT;
    }

    const size_t N = mObituaries ? mObituaries->size() : 0;
    for (size_t i=0; i<N; i++) {
        const Obituary& obit = mObituaries->itemAt(i);
        if ((obit.recipient == recipient
                    || (recipient == NULL && obit.cookie == cookie))
                && obit.flags == flags) {
            if (outRecipient != NULL) {
                *outRecipient = mObituaries->itemAt(i).recipient;
            }
            mObituaries->removeAt(i); //移除死亡通知
            if (mObituaries->size() == 0) {
                //清理死亡通知
                self->clearDeathNotification(mHandle, this);
                self->flushCommands();
                delete mObituaries;
                mObituaries = NULL;
            }
            return NO_ERROR;
        }
    }
    return NAME_NOT_FOUND;
}

6.2 clearDeathNotification

status_t IPCThreadState::clearDeathNotification(int32_t handle, BpBinder* proxy)
{
    mOut.writeInt32(BC_CLEAR_DEATH_NOTIFICATION);
    mOut.writeInt32((int32_t)handle);
    mOut.writePointer((uintptr_t)proxy);
    return NO_ERROR;
}

写入BC_CLEAR_DEATH_NOTIFICATION命令,再经过flushCommands(),则进入Kernel层。

6.3 Kernel层取消死亡通知

6.3.1 binder_thread_write

static int binder_thread_write(struct binder_proc *proc,
      struct binder_thread *thread,
      binder_uintptr_t binder_buffer, size_t size,
      binder_size_t *consumed)
{
  uint32_t cmd;
  //proc, thread都是指当前发起端进程的信息
  struct binder_context *context = proc->context;
  void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
  void __user *ptr = buffer + *consumed; 
  void __user *end = buffer + size;
  while (ptr < end && thread->return_error == BR_OK) {
    get_user(cmd, (uint32_t __user *)ptr); //获取BC_CLEAR_DEATH_NOTIFICATION
    ptr += sizeof(uint32_t);
    switch (cmd) {
        case BC_REQUEST_DEATH_NOTIFICATION:
        case BC_CLEAR_DEATH_NOTIFICATION: { //清除死亡通知
            uint32_t target;
            void __user *cookie;
            struct binder_ref *ref;
            struct binder_ref_death *death;

            get_user(target, (uint32_t __user *)ptr); //获取target
            ptr += sizeof(uint32_t);
            get_user(cookie, (void __user * __user *)ptr); 
            ptr += sizeof(void *);

            ref = binder_get_ref(proc, target); //拿到目标服务的binder_ref

            if (cmd == BC_REQUEST_DEATH_NOTIFICATION) {
                ...
            } else {
              if (ref->death == NULL) {
                break;
              }
              death = ref->death;
              if (death->cookie != cookie) {
                break; //比较是否同一个BpBinder
              }
              ref->death = NULL; //设置死亡通知为NULL
              if (list_empty(&death->work.entry)) {
                //添加BINDER_WORK_CLEAR_DEATH_NOTIFICATION事务
                death->work.type = BINDER_WORK_CLEAR_DEATH_NOTIFICATION;
                if (thread->looper & (BINDER_LOOPER_STATE_REGISTERED | BINDER_LOOPER_STATE_ENTERED)) {
                  list_add_tail(&death->work.entry, &thread->todo);
                } else {
                  list_add_tail(&death->work.entry, &proc->todo);
                  wake_up_interruptible(&proc->wait);
                }
              } else {
                death->work.type = BINDER_WORK_DEAD_BINDER_AND_CLEAR;
              }
            }
        } break;
      case ...;
    }
  }
}

添加BINDER_WORK_CLEAR_DEATH_NOTIFICATION事务

6.3.2 binder_thread_read

static int binder_thread_read(struct binder_proc *proc,
                  struct binder_thread *thread,
                  binder_uintptr_t binder_buffer, size_t size,
                  binder_size_t *consumed, int non_block)
    ...
    //唤醒等待中的binder线程
    wait_event_freezable_exclusive(proc->wait, binder_has_proc_work(proc, thread));
    binder_lock(__func__); //加锁

    if (wait_for_proc_work)
        proc->ready_threads--; //空闲的binder线程减1
    thread->looper &= ~BINDER_LOOPER_STATE_WAITING;

    while (1) {
        uint32_t cmd;
        struct binder_transaction_data tr;
        struct binder_work *w;
        struct binder_transaction *t = NULL;

        //从todo队列拿出前面放入的binder_work, 此时type为BINDER_WORK_DEAD_BINDER
        if (!list_empty(&thread->todo)) {
            w = list_first_entry(&thread->todo, struct binder_work,
                         entry);
        } else if (!list_empty(&proc->todo) && wait_for_proc_work) {
            w = list_first_entry(&proc->todo, struct binder_work,
                         entry);
        }

        switch (w->type) {
          case BINDER_WORK_DEAD_BINDER:
          case BINDER_WORK_DEAD_BINDER_AND_CLEAR:
          case BINDER_WORK_CLEAR_DEATH_NOTIFICATION: {
            struct binder_ref_death *death;
            uint32_t cmd;

            death = container_of(w, struct binder_ref_death, work);
            if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION)
              cmd = BR_CLEAR_DEATH_NOTIFICATION_DONE; //清除完成
            ...
            
            if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION) {
              list_del(&w->entry); //清除死亡通知的work队列
              kfree(death);
              binder_stats_deleted(BINDER_STAT_DEATH);
            } 
            ...
            
            if (cmd == BR_DEAD_BINDER)
              goto done;
          } break;
        }
    }
    ...
    return 0;
}

需要再回到用户空间,查看BR_CLEAR_DEATH_NOTIFICATION_DONE处理过程

6.4 IPC.executeCommand

status_t IPCThreadState::executeCommand(int32_t cmd)
{
    BBinder* obj;
    RefBase::weakref_type* refs;
    status_t result = NO_ERROR;

    switch ((uint32_t)cmd) {
        case BR_CLEAR_DEATH_NOTIFICATION_DONE:
        {
            BpBinder *proxy = (BpBinder*)mIn.readPointer();
            //减少弱引用
            proxy->getWeakRefs()->decWeak(proxy);
        } break;
      ...
    }
    ...
    return result;
}

七. 结论

对于Binder IPC进程都会打开/dev/binder文件,当进程异常退出时,Binder驱动会保证释放将要退出的进程中没有正常关闭的/dev/binder文件,实现机制是binder驱动通过调用/dev/binder文件所对应的release回调函数,执行清理工作,并且检查BBinder是否有注册死亡通知,当发现存在死亡通知时,那么就向其对应的BpBinder端发送死亡通知消息。

死亡回调DeathRecipient只有Bp才能正确使用,因为DeathRecipient用于监控Bn端挂掉的情况, 如果Bn建立跟自己的死亡通知,自己进程都挂了,也就无法通知。

每个BpBinder都有一个记录DeathRecipient列表的对象DeathRecipientList。

7.1 流程图

《Binder死亡通知机制之linkToDeath》

图解:点击查看大图

linkToDeath过程

  1. requestDeathNotification过程向驱动传递的命令BC_REQUEST_DEATH_NOTIFICATION,参数有mHandle和BpBinder对象;
  2. binder_thread_write()过程,同一个BpBinder可以注册多个死亡回调,但Kernel只允许注册一次死亡通知。
  3. 注册死亡回调的过程,实质就是向binder_ref结构体添加binder_ref_death指针, binder_ref_death的cookie记录BpBinder指针。

unlinkToDeath过程

  1. unlinkToDeath只有当该BpBinder的所有mObituaries都被移除,才会向驱动层执行清除死亡通知的动作, 否则只是从native层移除某个recipient。
  2. clearDeathNotification过程向驱动传递BC_CLEAR_DEATH_NOTIFICATION,参数有mHandle和BpBinder对象;
  3. binder_thread_write()过程,将BINDER_WORK_CLEAR_DEATH_NOTIFICATION事务添加当前当前进程/线程的todo队列

触发死亡回调

  1. 服务实体进程:binder_release过程会执行binder_node_release(),loop该binder_node下所有的ref->death对象。 当存在,则将BINDER_WORK_DEAD_BINDER事务添加ref->proc->todo(即ref所在进程的todo队列)
  2. 引用所在进程:执行binder_thread_read()过程,向用户空间写入BR_DEAD_BINDER,并触发死亡回调。
  3. 发送死亡通知sendObituary
    原文作者:Gityuan
    原文地址: http://gityuan.com/2016/10/03/binder_linktodeath/
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞