迷宫问题的C语言求解

 

1 .Preface

/**
* There have been many data to introduce the algorithm. So I will try to simply explain it and explain the program in detail.
*/

/**
* Prerequisites:
*  1). a survival skill in CPP programing language.
*  2). a curious mind for maze problem.
*
*/

//Image this, you have maze, just as following:
/*
*
*     1  1  1  1  1  1  1  1  1  1
*-> 1  0  0  1  0  0  0  1  0  1
*     1  0  0  1  0  0  0  1  0  1
*     1  0  0  0  0  1  1  0  0  1
*     1  0  1  1  1  0  0  0  0  1
*     1  0  0  0  1  0  0  0  0  1
*     1  0  1  0  0  0  1  0  0  1
*     1  0  1  1  1  0  1  1  0  1
*     1  1  0  0  0  0  0  0  0  1  –>exit
*     1  1  1  1  1  1  1  1  1  1 
*/
//the entrance is [1,1], and exit is [8,8].
//How could you find a valid way to get through this?

/*
* when  start with [1, 1] , we will arrive some special position, which provide us many paths .For example, if we reside in [1, 1], there have two paths for us, [ 2, 1] and [ 1, 2]. Those speical nodes connect each other and compose a complexity topology network.

*
* To solve this problem, we could do as following:
*  step 1: just go ahead as one pleases , but record all nodes which has arrived.
*  step 2: if arrive a dead end, that mean you was choose a wrong path. So you need to go back the same way, find the last node which you did a choice, and  step into another choice.
*  step 3: Then repeat step 1 untill arrive the exit.
*
*/

2.Source code

/**
* Now, check this source code. I divided this problem with three parts: a stack, a map, and a boy who provide solve solution. First, let us put that poor little boy into this maze.( brutally )
*/

2. 1 Tool–stack.h

/**
* To traverse the network totally, the little boy must ensure he can go back the same way. So he save all of nodes,which he has been arrived,into a stack. The feature of stack is
* first in, first out. That’s what we lack.
*/

/**
*    For make this stack more useful, a class template is created.
*/
#ifndef STACK_H
#define STACK_H


typedef int    INDEX;

template < class ELEM>
class STACK{
        public:
                STACK( int capacity);    //capacity
                ~STACK( void);
                /*
            *    some basic operation function.
            */
                bool    pop( ELEM &item);
                bool    push( ELEM item);
                /*
            *    sometimes, we want to visit those elements in the stack simply, instead of
            *    pop them from stack.
            */
                bool reset_v( void);        //reset view point
                bool pop_v( ELEM &item);	//view stack

        private:
                /*
            *    the bottom of stack
            */
                ELEM    *base;
                /*
            *    the top of stack.
            */
                INDEX    top;
                /*
            *	the current position for pop
            */
                INDEX    cur;
                /*
            *    the current postion for visit stack
            */
                INDEX    v_cur;
};

#define STACK_MAX    1000

/**
*    This is just a simply stack, and even don't consider dynamic extension.
*/
template <class ELEM>
STACK<ELEM>::STACK(int capacity)
{
        if( ( capacity<=0)
            ||( capacity>STACK_MAX))
        {
                this->base = NULL;
                return ;
        }
        this->base = NULL;
        this->base = new ELEM[capacity];
        this->top = capacity -1;
        this->cur = -1;
        this->v_cur = -1;
}


template <class ELEM>
STACK<ELEM>::~STACK( void)
{
        if( NULL!=this->base)
        {
                delete [](this->base);
                this->base = NULL;
        }
}


template <class ELEM> 
bool STACK<ELEM>::push( ELEM item)
{
        if( (NULL==this->base)
            ||(this->top==this->cur))
                return false;

        this->cur ++;
        this->base[this->cur] = item;
        return true;
}


template <class ELEM>
bool STACK<ELEM>::pop( ELEM &item)
{
        if( (NULL==this->base)
            ||(this->cur<0))
                return false;

        item = this->base[this->cur];
        this->cur--;

        return true;
}

/**
*    This function is used to visit stack.
*/
template <class ELEM>
bool STACK<ELEM>::pop_v( ELEM &item)
{
        if( (NULL==this->base)
            ||(this->v_cur<0))
                return false;

        item = this->base[this->v_cur];
        this->v_cur--;

        return true;
}

/**
*    reset the posion of visit at current postion of stack.
*    That is necessary before use pop_v().
*/
template <class ELEM>
bool STACK<ELEM>::reset_v( void)
{
        this->v_cur = this->cur;
        return true;
}


#endif

 


2.2 Tool–map.h

/**
* Obviously, a map is necessary. By the help of the map, the boy could  concentrate on hisself’s work rather than be busy with some things about map. That make the code is more clear and simple.
*/

/**
*    Map is a 2D matrix. For a element in the matrix, it compose by three parts:
*    X coordinate, Y coordinate and additional data in which we could save some
*    attribute information about this node.
*/
#ifndef MAP_H
#define MAP_H

#define MAP_MAX	15

typedef int    COORDINATE;

template <class NODE>
class MAP{
        public:
                MAP( int width);
                ~MAP( void);
                /*
            *    get a node which reside in [x,y]. The information of node
            *    will be write into @nod.
            */
                bool cur( COORDINATE x, COORDINATE y , NODE &nod);
                /*
            *    get a node reside in [ x-1, y].
            */
                bool left( COORDINATE x, COORDINATE y , NODE &nod);
                bool right( COORDINATE x, COORDINATE y, NODE &nod);
                bool up( COORDINATE x, COORDINATE y, NODE &nod);
                bool down( COORDINATE x, COORDINATE y, NODE &nod);
                /*
            *    set a map node
            */
                bool set( COORDINATE x, COORDINATE y, NODE &nod);

        private:
                /*
            *    point to the map
            */
                NODE    **p;
                int        wid;
};


/**
*    Init the size of map. Because we don't know any thing about the size,
*    nither width, nor height. So we use a trick.
*/
template <class NODE>
MAP<NODE>::MAP( int width)
{
        if( width>MAP_MAX)
        {
                this->p = NULL;
                return;
        }
        this->p = NULL;
#if 0
        this->p = ( NODE **)malloc( sizeof(NODE)*width*width);
#else
        this->p = new NODE*[width];
        for( int i=0; i<width; i++)
                this->p[i] = new NODE[width];
#endif
        this->wid = width;
}


template <class NODE>
MAP<NODE>::~MAP( void)
{
        if( NULL!=this->p)
        {
#if 0
                free (this->p);
#else
                for( int i=0; i<this->wid; i++)
                        delete []this->p[i];
                delete []this->p;
#endif
                this->p = NULL;
                this->wid = 0;
        }
}


template <class NODE>
bool MAP<NODE>::cur(COORDINATE x, COORDINATE y, NODE &nod)
{
        if( (x<0||x>=this->wid)
            ||(y<0||y>=this->wid))
                return false;
	
        nod =  this->p[x][y];
        return true;
}

template <class NODE >
bool MAP<NODE >::left( COORDINATE x, COORDINATE y, NODE &nod)
{
        if( (x<0||x>=this->wid)
            ||(y<=0||y>=this->wid))
                return false;

        nod =  this->p[ x][y-1];
        return true;
}

template <class NODE>
bool MAP<NODE>::right( COORDINATE x, COORDINATE y, NODE &nod)
{
        if( (x<0||x>=this->wid)
            ||(y<0||y>=this->wid-1))
                return false;

        nod = this->p[x][y+1];
        return true;
}

template <class NODE>
bool MAP<NODE>::up( COORDINATE x, COORDINATE y, NODE &nod)
{
        if( (x<=0||x>=this->wid)
            ||(y<0||y>=this->wid))
                return false;

        nod = this->p[x-1][y];
        return true;
}

template <class NODE>
bool MAP<NODE>::down( COORDINATE x, COORDINATE y, NODE &nod)
{
        if( (x<0||x>=this->wid-1)
            ||(y<0||y>=this->wid))
                return false;

        nod = this->p[x+1][y];
        return true;	
}

template <class NODE>
bool MAP<NODE>::set( COORDINATE x, COORDINATE y, NODE &nod)
{
        if( (x<0||x>=this->wid)
            ||(y<0||y>=this->wid))
                return false;
	
        if( NULL==this->p)
        {
                return false;
        }

        this->p[x][y] = nod;
        return true;
}

#endif

 

2.3 Operator–boy

#include <stdio.h>
#include <iostream>

/**
*	To traverse the network totally, the little boy must ensure he can go back the same way.
*	So he save all of nodes,which he has been arrived,into a stack. The feature of stack is
*	first in, first out. That's what we lack.
*/
#include "../stack.h"

/**
*	Obviously, a map is necessary. By the help of the map, the boy could 
*	concentrate on hisself's work rather than be busy with some things about map.
*	That make the code is more clear and simple.
*/
#include "map.h"

//map node
typedef unsigned char	UINT8;

#define MAP_WID	10
#define END_X	(MAP_WID-2)	//8
#define END_Y	(MAP_WID-2)	//8

#define STACK_DEPTH	200


enum ORIEN{
    O_RIGHT,
    O_DOWN,
    O_LEFT,
    O_UP,
    O_INVIALID,
    O_MAX,
};

enum TERRAIN {
    T_NOR = 0,
    T_BLOCK = 1,
    T_INVALID = 2,
};

/**
*    map information, 1 meaning for T_BLOCK. 0 meaning for T_NOR.
*/
static int	map_v[MAP_WID][MAP_WID] = {
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 0, 0, 1, 0, 0, 0, 1, 0, 1,
        1, 0, 0, 1, 0, 0, 0, 1, 0, 1,
        1, 0, 0, 0, 0, 1, 1, 0, 0, 1,
        1, 0, 1, 1, 1, 0, 0, 0, 0, 1,
        1, 0, 0, 0, 1, 0, 0, 0, 0, 1,
        1, 0, 1, 0, 0, 0, 1, 0, 0, 1,
        1, 0, 1, 1, 1, 0, 1, 1, 0, 1,
        1, 1, 0, 0, 0, 0, 0, 0, 0, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
};

/*
*    basic element in map was used to record all information about 
*    a node.
*/
typedef  struct {
    COORDINATE	x;
    COORDINATE	y;
    TERRAIN	val;
    ORIEN	orien;
    bool		hasComing;
} ELEMENT;

/**
*    And this is that poor boy. He will provide a algorithm to solve 
*    this maze problem. Of course, he need some tools: stack and 
*    map.
*/
class BOY {
        public:
                BOY( void);
                ~BOY( void);
                /*
            *    begin to traverse this maze.
            */
                bool work( void);
                /*
            *    show information
            */
                bool ShowMap( void);
                bool ShowStack( void);

                private:
                /*
            *    two important functions, they compose the core of this algorithm.
            */
                bool forward( void);
                bool backward( void);
                /*
            *    work for those function above. 
            */
                bool hasNBranch( ELEMENT &c_elem, ELEMENT &nod, ORIEN &from);	//has a new branch
                bool isEnd( void);			//arrive the end
                bool findVisible( ELEMENT &c_elem, ELEMENT &nod, ORIEN& from);
                bool wasCome( ELEMENT &c_elem);

                /*
            *    tool 1
            */
                MAP<ELEMENT>            map;
                /*
            *    tool 2
            */
                STACK<ELEMENT>        stack;
                /*
            *    current position
            */
                ELEMENT    cur;
};


BOY::BOY(void):map(MAP_WID), stack(STACK_DEPTH)
{
        cur.x = 1;
        cur.y = 1;
        cur.val = T_NOR;
        cur.orien = O_INVIALID;

        ELEMENT    tmp_elem;
        COORDINATE	i,j;
        for( i=0; i<MAP_WID; i++)
            for( j=0; j<MAP_WID; j++)
            {
                tmp_elem.x = i;
                tmp_elem.y = j;
                tmp_elem.orien = O_INVIALID;
                tmp_elem.hasComing = false;
                tmp_elem.val = ( TERRAIN)map_v[i][j];
                this->map.set( tmp_elem.x, tmp_elem.y, tmp_elem);
            }
}

BOY::~BOY( void)
{}

bool BOY::work(void)
{
        bool    isContinue = true;
        while( isContinue)
        {
                printf("this->cur[ %d, %d]\n", this->cur.x, this->cur.y);
                /*
            *    go ahead until encounter a dead end or arrive the exit.
            */
                while( this->forward( ))
                {
                        printf("this->cur[ %d, %d]\n", this->cur.x, this->cur.y);
                        if( this->isEnd( ) )
                                return true;
                }
                /*
            *    when the boy has encounter a dead end, he need to backtrack.
            *    find a valid path.
            */
                printf("back>\n");
                isContinue=this->backward( );
        }

        return false;
}


/**
*    based on current position, try to forward a step. If success, the previous postion
*    will be push in the stack. and update the information of past node  as arrived.
*    if fail, that meaning current node is a dead end.
*/
bool BOY::forward(void)
{
        ELEMENT    tmp_elem;
        ORIEN        tmp_from = O_RIGHT;

        if( !this->hasNBranch( this->cur, tmp_elem, tmp_from))
        {
                return false;
        }
        this->cur.orien = tmp_from;
        this->stack.push( this->cur);
	
        this->cur = tmp_elem;
        this->cur.hasComing = true;	
        this->map.set( this->cur.x, this->cur.y, this->cur);

        return true;
}


/**
*    one of the core function. when the boy arrived a dead end,
*    this function will be call . It go back the same way untill find
*    a valid node that could give the little boy a new path(or a branch).
*/
bool BOY::backward(void)
{
        ELEMENT    tmp_elem;
        ORIEN        tmp_from = O_RIGHT;
        while( this->stack.pop( tmp_elem))
        {
                this->cur = tmp_elem;
                if( this->hasNBranch( this->cur, tmp_elem, tmp_from))
                {
                        return true;
                }
        }

        return false;
}

/**
*    check whether @c_elem node has a valid path that deserve to visit.
*    as same as other function, all information will be write into @elem 
*    and @from.
*/
bool BOY::hasNBranch( ELEMENT &c_elem, ELEMENT &elem, ORIEN &from)
{
        ELEMENT    tmp_elem;
        ORIEN        tmp_from = from;
        while(1)
        {
                //find next visible position.
                        //Y:continue
                        //N:this node is a ending
                if( !this->findVisible( c_elem, tmp_elem, tmp_from))
                {
                        return false;
                }
                //was coming?
                        //Y:coninue
                        //N:right way
                if( !this->wasCome( tmp_elem))
                {//this is a new branch
                        break;
                }
                tmp_from =(ORIEN)( tmp_from + 1);		//next orientation
        }

        elem = tmp_elem;
        from = tmp_from;
        return true;
}

/**
*    arrive the exit of maze ?
*/
bool BOY::isEnd(void)
{
        if( (this->cur.x==END_X)
            &&(this->cur.y ==END_Y))
        {
                return true;
        }

        return false;
}

/**
*    find a visible path that is not block. It use @c_elem as the current view point,
*    if success , write information into @elem and @from.
*/
bool BOY::findVisible( ELEMENT &c_elem, ELEMENT &elem, ORIEN& from)
{
        ELEMENT	    tmp;
/*
*    check valid path clockwise.
*/
        switch( from)
        {
                case O_RIGHT:
                        if( (this->map.right( c_elem.x, c_elem.y, tmp))
                            &&( tmp.val == T_NOR))
                        {
                                elem = tmp;
                                from = O_RIGHT;
                                return true;
                        }
                case O_DOWN:
                        if( (this->map.down( c_elem.x, c_elem.y, tmp))
                                &&( tmp.val == T_NOR))
                            {
                                    elem = tmp;
                                    from = O_DOWN;
                                    return true;
                            }
                case O_LEFT:
                            if( (this->map.left( c_elem.x, c_elem.y, tmp))
                                &&( tmp.val == T_NOR))
                            {
                                    elem = tmp;
                                    from = O_LEFT;
                                    return true;
                            }
                case O_UP:
                            if( (this->map.up( c_elem.x, c_elem.y, tmp))
                                &&( tmp.val == T_NOR))
                            {
                                    elem = tmp;
                                    from = O_UP;
                                    return true;
                            }
                default :;
        }

        return false;
}

/**
*    Though this function is very tiny, it hold a important position
*    in the totally algorithm. The upper function will call this to ensure
*    whether a node is deserve to visit. By add a series of strategies 
*    we could improve the algorithm.
*/
bool BOY::wasCome( ELEMENT &c_elem)
{
#if 1
        //label
        return c_elem.hasComing;
#else
	//标准1
	if( c_elem.hasComing)
		return true;

	//标准2
	ELEMENT	elem;
	this->stack.reset_v();
	while( this->stack.pop_v( elem))
	{
		if( (c_elem.x==elem.x)
			&&(c_elem.y==elem.y))
			return true;
	}

	return false;	//wasn't coming

#endif
}

/**
*    show the status of map
*/
bool BOY::ShowMap(void)
{
        printf("-----------MAP---------------------\n");
        COORDINATE    i,j;
        for( i=0; i<MAP_WID; i++)
        {
                for( j=0; j<MAP_WID; j++)
                {
                        ELEMENT	tmp;
                        if(!this->map.cur( i, j, tmp))
                        {
                                printf("error: [ %d, %d]\n", i, j);
                                return false;
                        }
                        printf("%3d", tmp.val);
                }
                printf("\n");
        }

        return true;
}

/**
*    show the status of stack, just visit it and don't pop element from it
*/
bool BOY::ShowStack(void)
{
        printf("-----------STACK---------------------\n");

        ELEMENT    tmp_elem;

        this->stack.reset_v( );
        while( this->stack.pop_v( tmp_elem))
        {
                printf("[ %d, %d]\n", tmp_elem.x, tmp_elem.y);
        }
}

int main()
{
        BOY    boy;
        boy.ShowMap( );
        boy.work( );
        boy.ShowStack( );
        return 0;
}

 

    原文作者:迷宫问题
    原文地址: https://blog.csdn.net/u012301943/article/details/33769799
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞