数据挖掘领域十大经典算法之—CART算法(超详细附代码)

相关文章:

简介

CART与C4.5类似,是决策树算法的一种。此外,常见的决策树算法还有ID3,这三者的不同之处在于特征的划分:

  • ID3:特征划分基于信息增益
  • C4.5:特征划分基于信息增益比
  • CART:特征划分基于基尼指数

基本思想

CART假设决策树是二叉树,内部结点特征的取值为“是”和“否”,左分支是取值为“是”的分支,右分支是取值为“否”的分支。这样的决策树等价于递归地二分每个特征,将输入空间即特征空间划分为有限个单元,并在这些单元上确定预测的概率分布,也就是在输入给定的条件下输出的条件概率分布。

CART算法由以下两步组成:

  1. 决策树生成:基于训练数据集生成决策树,生成的决策树要尽量大;
  2. 决策树剪枝:用验证数据集对已生成的树进行剪枝并选择最优子树,这时损失函数最小作为剪枝的标准。

CART决策树的生成就是递归地构建二叉决策树的过程。CART决策树既可以用于分类也可以用于回归。本文我们仅讨论用于分类的CART。对分类树而言,CART用Gini系数最小化准则来进行特征选择,生成二叉树。 CART生成算法如下:

输入:训练数据集D,停止计算的条件:
输出:CART决策树。

根据训练数据集,从根结点开始,递归地对每个结点进行以下操作,构建二叉决策树:

  1. 设结点的训练数据集为D,计算现有特征对该数据集的Gini系数。此时,对每一个特征A,对其可能取的每个值a,根据样本点对A=a的测试为“是”或 “否”将D分割成D1和D2两部分,计算A=a时的Gini系数。
  2. 在所有可能的特征A以及它们所有可能的切分点a中,选择Gini系数最小的特征及其对应的切分点作为最优特征与最优切分点。依最优特征与最优切分点,从现结点生成两个子结点,将训练数据集依特征分配到两个子结点中去。
  3. 对两个子结点递归地调用步骤l~2,直至满足停止条件。
  4. 生成CART决策树。

算法停止计算的条件是结点中的样本个数小于预定阈值,或样本集的Gini系数小于预定阈值(样本基本属于同一类),或者没有更多特征。

代码

代码已在github上实现(调用sklearn),这里也贴出来

# encoding=utf-8

import pandas as pd
import time

from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score

from sklearn.tree import DecisionTreeClassifier



if __name__ == '__main__':

    print("Start read data...")
    time_1 = time.time()

    raw_data = pd.read_csv('../data/train.csv', header=0) 
    data = raw_data.values

    features = data[::, 1::]
    labels = data[::, 0]

    # 随机选取33%数据作为测试集,剩余为训练集
    train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.33, random_state=0)

    time_2 = time.time()
    print('read data cost %f seconds' % (time_2 - time_1))


    print('Start training...') 
    # criterion可选‘gini’, ‘entropy’,默认为gini(对应CART算法),entropy为信息增益(对应ID3算法)
    clf = DecisionTreeClassifier(criterion='gini') 
    clf.fit(train_features,train_labels)
    time_3 = time.time()
    print('training cost %f seconds' % (time_3 - time_2))


    print('Start predicting...')
    test_predict = clf.predict(test_features)
    time_4 = time.time()
    print('predicting cost %f seconds' % (time_4 - time_3))


    score = accuracy_score(test_labels, test_predict)
print("The accruacy score is %f" % score)

测试数据集为MNIST数据集,获取地址为train.csv

运行结果

《数据挖掘领域十大经典算法之—CART算法(超详细附代码)》

    原文作者:常用算法
    原文地址: https://blog.csdn.net/fuqiuai/article/details/79469412
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞

发表评论

电子邮件地址不会被公开。 必填项已用*标注