字符串匹配之BM和KMP算法

这篇博客是一媛媛妹纸写的BM算法很详细的嗦:http://www.cnblogs.com/lanxuezaipiao/p/3452579.html

以下内容转自:http://www.ruanyifeng.com/blog/2013/05/boyer-moore_string_search_algorithm.html

字符串匹配是计算机的基本任务之一。

KMP算法:

举例来说,有一个字符串”BBC ABCDAB ABCDABCDABDE”,我想知道,里面是否包含另一个字符串”ABCDABD”?

《字符串匹配之BM和KMP算法》

许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

《字符串匹配之BM和KMP算法》

这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

1.

《字符串匹配之BM和KMP算法》

首先,字符串”BBC ABCDAB ABCDABCDABDE”的第一个字符与搜索词”ABCDABD”的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

2.

《字符串匹配之BM和KMP算法》

因为B与A不匹配,搜索词再往后移。

3.

《字符串匹配之BM和KMP算法》

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

4.

《字符串匹配之BM和KMP算法》

接着比较字符串和搜索词的下一个字符,还是相同。

5.

《字符串匹配之BM和KMP算法》

直到字符串有一个字符,与搜索词对应的字符不相同为止。

6.

《字符串匹配之BM和KMP算法》

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把”搜索位置”移到已经比较过的位置,重比一遍。

7.

《字符串匹配之BM和KMP算法》

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是”ABCDAB”。KMP算法的想法是,设法利用这个已知信息,不要把”搜索位置”移回已经比较过的位置,继续把它向后移,这样就提高了效率。

8.

《字符串匹配之BM和KMP算法》

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

9.

《字符串匹配之BM和KMP算法》

已知空格与D不匹配时,前面六个字符”ABCDAB”是匹配的。查表可知,最后一个匹配字符B对应的”部分匹配值”为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 – 对应的部分匹配值

因为 6 – 2 等于4,所以将搜索词向后移动4位。

10.

《字符串匹配之BM和KMP算法》

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2(”AB”),对应的”部分匹配值”为0。所以,移动位数 = 2 – 0,结果为 2,于是将搜索词向后移2位。

11.

《字符串匹配之BM和KMP算法》

因为空格与A不匹配,继续后移一位。

12.

《字符串匹配之BM和KMP算法》

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 – 2,继续将搜索词向后移动4位。

13.

《字符串匹配之BM和KMP算法》

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 – 0,再将搜索词向后移动7位,这里就不再重复了。

14.

《字符串匹配之BM和KMP算法》

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:”前缀”和”后缀”。 “前缀”指除了最后一个字符以外,一个字符串的全部头部组合;”后缀”指除了第一个字符以外,一个字符串的全部尾部组合。

15.

《字符串匹配之BM和KMP算法》

“部分匹配值”就是”前缀”和”后缀”的最长的共有元素的长度。以”ABCDABD”为例,

  - ”A”的前缀和后缀都为空集,共有元素的长度为0;

  - ”AB”的前缀为[A],后缀为[B],共有元素的长度为0;

  - ”ABC”的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - ”ABCD”的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - ”ABCDA”的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为”A”,长度为1;

  - ”ABCDAB”的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为”AB”,长度为2;

  - ”ABCDABD”的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

16.

《字符串匹配之BM和KMP算法》

“部分匹配”的实质是,有时候,字符串头部和尾部会有重复。比如,”ABCDAB”之中有两个”AB”,那么它的”部分匹配值”就是2(”AB”的长度)。搜索词移动的时候,第一个”AB”向后移动4位(字符串长度-部分匹配值),就可以来到第二个”AB”的位置。

(完)

============================================================================================================================

BM算法:

上一篇文章,我介绍了KMP算法

但是,它并不是效率最高的算法,实际采用并不多。各种文本编辑器的”查找”功能(Ctrl+F),大多采用Boyer-Moore算法

《字符串匹配之BM和KMP算法》

Boyer-Moore算法不仅效率高,而且构思巧妙,容易理解。1977年,德克萨斯大学的Robert S. Boyer教授和J Strother Moore教授发明了这种算法。

下面,我根据Moore教授自己的例子来解释这种算法。

1.

《字符串匹配之BM和KMP算法》

假定字符串为”HERE IS A SIMPLE EXAMPLE”,搜索词为”EXAMPLE”。

2.

《字符串匹配之BM和KMP算法》

首先,”字符串”与”搜索词”头部对齐,从尾部开始比较。

这是一个很聪明的想法,因为如果尾部字符不匹配,那么只要一次比较,就可以知道前7个字符(整体上)肯定不是要找的结果。

我们看到,”S”与”E”不匹配。这时,“S”就被称为”坏字符”(bad character),即不匹配的字符。我们还发现,”S”不包含在搜索词”EXAMPLE”之中,这意味着可以把搜索词直接移到”S”的后一位。

3.

《字符串匹配之BM和KMP算法》

依然从尾部开始比较,发现”P”与”E”不匹配,所以”P”是”坏字符”。但是,”P”包含在搜索词”EXAMPLE”之中。所以,将搜索词后移两位,两个”P”对齐。

4.

《字符串匹配之BM和KMP算法》

我们由此总结出“坏字符规则”

  后移位数 = 坏字符的位置 – 搜索词中的上一次出现位置

如果”坏字符”不包含在搜索词之中,则上一次出现位置为 -1。

以”P”为例,它作为”坏字符”,出现在搜索词的第6位(从0开始编号),在搜索词中的上一次出现位置为4,所以后移 6 – 4 = 2位。再以前面第二步的”S”为例,它出现在第6位,上一次出现位置是 -1(即未出现),则整个搜索词后移 6 – (-1) = 7位。

5.

《字符串匹配之BM和KMP算法》

依然从尾部开始比较,”E”与”E”匹配。

6.

《字符串匹配之BM和KMP算法》

比较前面一位,”LE”与”LE”匹配。

7.

《字符串匹配之BM和KMP算法》

比较前面一位,”PLE”与”PLE”匹配。

8.

《字符串匹配之BM和KMP算法》

比较前面一位,”MPLE”与”MPLE”匹配。我们把这种情况称为”好后缀”(good suffix),即所有尾部匹配的字符串。注意,”MPLE”、”PLE”、”LE”、”E”都是好后缀。

9.

《字符串匹配之BM和KMP算法》

比较前一位,发现”I”与”A”不匹配。所以,”I”是”坏字符”。

10.

《字符串匹配之BM和KMP算法》

根据”坏字符规则”,此时搜索词应该后移 2 – (-1)= 3 位。问题是,此时有没有更好的移法?

11.

《字符串匹配之BM和KMP算法》

我们知道,此时存在”好后缀”。所以,可以采用“好后缀规则”

  后移位数 = 好后缀的位置 – 搜索词中的上一次出现位置

举例来说,如果字符串”ABCDAB”的后一个”AB”是”好后缀”。那么它的位置是5(从0开始计算,取最后的”B”的值),在”搜索词中的上一次出现位置”是1(第一个”B”的位置),所以后移 5 – 1 = 4位,前一个”AB”移到后一个”AB”的位置。

再举一个例子,如果字符串”ABCDEF”的”EF”是好后缀,则”EF”的位置是5 ,上一次出现的位置是 -1(即未出现),所以后移 5 – (-1) = 6位,即整个字符串移到”F”的后一位。

这个规则有三个注意点:

  (1)”好后缀”的位置以最后一个字符为准。假定”ABCDEF”的”EF”是好后缀,则它的位置以”F”为准,即5(从0开始计算)。

  (2)如果”好后缀”在搜索词中只出现一次,则它的上一次出现位置为 -1。比如,”EF”在”ABCDEF”之中只出现一次,则它的上一次出现位置为-1(即未出现)。

  (3)如果”好后缀”有多个,则除了最长的那个”好后缀”,其他”好后缀”的上一次出现位置必须在头部。比如,假定”BABCDAB”的”好后缀”是”DAB”、”AB”、”B”,请问这时”好后缀”的上一次出现位置是什么?回答是,此时采用的好后缀是”B”,它的上一次出现位置是头部,即第0位。这个规则也可以这样表达:如果最长的那个”好后缀”只出现一次,则可以把搜索词改写成如下形式进行位置计算”(DA)BABCDAB”,即虚拟加入最前面的”DA”。

回到上文的这个例子。此时,所有的”好后缀”(MPLE、PLE、LE、E)之中,只有”E”在”EXAMPLE”还出现在头部,所以后移 6 – 0 = 6位。

12.

《字符串匹配之BM和KMP算法》

可以看到,”坏字符规则”只能移3位,”好后缀规则”可以移6位。所以,Boyer-Moore算法的基本思想是,每次后移这两个规则之中的较大值。

更巧妙的是,这两个规则的移动位数,只与搜索词有关,与原字符串无关。因此,可以预先计算生成《坏字符规则表》和《好后缀规则表》。使用时,只要查表比较一下就可以了。

13.

《字符串匹配之BM和KMP算法》

继续从尾部开始比较,”P”与”E”不匹配,因此”P”是”坏字符”。根据”坏字符规则”,后移 6 – 4 = 2位。

14.

《字符串匹配之BM和KMP算法》

从尾部开始逐位比较,发现全部匹配,于是搜索结束。如果还要继续查找(即找出全部匹配),则根据”好后缀规则”,后移 6 – 0 = 6位,即头部的”E”移到尾部的”E”的位置。

(完)

    原文作者:KMP算法
    原文地址: https://blog.csdn.net/willib/article/details/21086693
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞

发表评论

电子邮件地址不会被公开。 必填项已用*标注