Dijkstra [迪杰斯特拉]算法思路(求单点到其他每个点的各个最短路径)Floyd算法:任意两点间最短距离

先给出一个无向图

《Dijkstra [迪杰斯特拉]算法思路(求单点到其他每个点的各个最短路径)Floyd算法:任意两点间最短距离》

用Dijkstra算法(迪杰斯特拉算法)找出以A为起点的单源最短路径步骤如下

《Dijkstra [迪杰斯特拉]算法思路(求单点到其他每个点的各个最短路径)Floyd算法:任意两点间最短距离》

应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。

《Dijkstra [迪杰斯特拉]算法思路(求单点到其他每个点的各个最短路径)Floyd算法:任意两点间最短距离》Dijkstra算法的迭代过程:

《Dijkstra [迪杰斯特拉]算法思路(求单点到其他每个点的各个最短路径)Floyd算法:任意两点间最短距离》

Floyd算法思想:

1、从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。 2、对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。 把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=无穷大。定义一个矩阵D用来记录所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。把各个顶点插入图中,比较插点后的距离与原来的距离,G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。在G中包含有两点之间最短道路的信息,而在D中则包含了最短通
路径的信息。 比如,要寻找从V5到V1的路径。根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。

最短距离有三种情况:
1、两点的直达距离最短。(如下图<v,x>)
2、两点间只通过一个中间点而距离最短。(图<v,u>)
3、两点间用通过两各以上的顶点而距离最短。(图<v,w>)

对于第一种情况:在初始化的时候就已经找出来了且以后也不会更改到。
对于第二种情况:弗洛伊德算法的基本操作就是对于每一对顶点,遍历所有其它顶点,看看可否通过这一个顶点让这对顶点距离更短,也就是遍历了图中所有的三角形(算法中对同一个三角形扫描了九次,原则上只用扫描三次即可,但要加入判断,效率更低)。
对于第三种情况:如下图的五边形,可先找一点(比如x,使<v,u>=2),就变成了四边形问题,再找一点(比如y,使<u,w&gt;=2),可变成三角形问题了(v,u,w),也就变成第二种情况了,由此对于n边形也可以一步步转化成四边形三角形问题。(这里面不用担心哪个点要先找哪个点要后找,因为找了任一个点都可以使其变成(n-1)边形的问题)。

《Dijkstra [迪杰斯特拉]算法思路(求单点到其他每个点的各个最短路径)Floyd算法:任意两点间最短距离》

结合代码 并参照上图所示 我们来模拟执行下 这样才能加深理解:
第一关键步骤:当k执行到x,i=v,j=u时,计算出v到u的最短路径要通过x,此时v、u联通了。
第二关键步骤:当k执行到u,i=v,j=y,此时计算出v到y的最短路径的最短路径为v到u,再到y(此时v到u的最短路径上一步我们已经计算过来,直接利用上步结果)。
第三关键步骤:当k执行到y时,i=v,j=w,此时计算出最短路径为v到y(此时v到y的最短路径长在第二步我们已经计算出来了),再从y到w。

依次扫描每一点(k),并以该点作为中介点,计算出通过k点的其他任意两点(i,j)的最短距离,这就是floyd算法的精髓!

    原文作者:Dijkstra算法
    原文地址: https://blog.csdn.net/lingzhm/article/details/44755961
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞