Dijkstra算法步骤及代码

转载自:http://www.cnblogs.com/dolphin0520/archive/2011/08/26/2155202.html

动画演示:http://www.ntnoi.cn/FLASH/arithmetic/2010-05-17/23.html    http://baike.baidu.com/view/1712262.htm

 单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。

一.最短路径的最优子结构性质

   该性质描述为:如果P(i,j)={Vi….Vk..Vs…Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。

   假设P(i,j)={Vi….Vk..Vs…Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。

二.Dijkstra算法

   由上述性质可知,如果存在一条从i到j的最短路径(Vi…..Vk,Vj),Vk是Vj前面的一顶点。那么(Vi…Vk)也必定是从i到k的最短路径。为了求出最短路径,Dijkstra就提出了以最短路径长度递增,逐次生成最短路径的算法。譬如对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+matrix[i][j]}。根据这种思路,

假设存在G=<V,E>,源顶点为V0,U={V0},dist[i]记录V0到i的最短距离,path[i]记录从V0到i路径上的i前面的一个顶点。

1.从V-U中选择使dist[i]值最小的顶点i,将i加入到U中;

2.更新与i直接相邻顶点的dist值。(dist[j]=min{dist[j],dist[i]+matrix[i][j]})

3.知道U=V,停止。

算法步骤:

G={V,E} 1. 初始时令 S={V0},T=V-S={其余顶点},T中顶点对应的距离值 若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值 若不存在<V0,Vi>,d(V0,Vi)为∞ 2. 从T中选取一个与S中顶点有关联边且权值最小的顶点W,加入到S中 3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值 重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

在保存路径的时候,参考程序中的方法,对每一次修改了最小距离的顶点进行记录,然后使用顶点之间的跳转进行索引。

/*Dijkstra求单源最短路径*/

#include <iostream>
#include<stack>
#include<stdlib.h>
#include <stdio.h>
#include<limits.h>
#define M 100
#define N 100
using namespace std;

typedef struct node
{
    int matrix[N][M];      //邻接矩阵
    int n;                 //顶点数
    int e;                 //边数
}MGraph;

void DijkstraPath(MGraph g,int *dist,int *path,int v0)   //v0表示源顶点
{
    int i,j,k;
    bool *visited=(bool *)malloc(sizeof(bool)*g.n);
    for(i=0;i<g.n;i++)     //初始化
    {
        if(g.matrix[v0][i]>0&&i!=v0)
        {
            dist[i]=g.matrix[v0][i];
            path[i]=v0;     //path记录最短路径上从v0到i的前一个顶点
        }
        else
        {
            dist[i]=INT_MAX;    //若i不与v0直接相邻,则权值置为无穷大
            path[i]=-1;
        }
        visited[i]=false;
        path[v0]=v0;
        dist[v0]=0;
    }
    visited[v0]=true;
    for(i=1;i<g.n;i++)     //循环扩展n-1次
    {
        int min=INT_MAX;
        int u;
        for(j=0;j<g.n;j++)    //寻找未被扩展的权值最小的顶点
        {
            if(visited[j]==false&&dist[j]<min)
            {
                min=dist[j];
                u=j;
            }
        }
        visited[u]=true;    //加入已经访问过的集合,被访问过的集合里的点的距离都是到原点距离最近的
        for(k=0;k<g.n;k++)   //更新dist数组的值和路径的值
        {
            //当访问过集合变化的时候,看一下这个集合中新顶点相邻点到原点的距离是否缩短了
            if(visited[k]==false&&g.matrix[u][k]>0&&(min+g.matrix[u][k])<dist[k])
            {
                dist[k]=min+g.matrix[u][k];
                //路径有更新就记录一下这一步加入访问集合的顶点~~
                path[k]=u;
            }
        }
    }
}

void showPath(int *path,int v,int v0)   //打印最短路径上的各个顶点
{
    stack<int> s;
    int u=v;
    while(v!=v0)
    {
        s.push(v);
        v=path[v];
    }
    s.push(v);
    while(!s.empty())
    {
        cout<<s.top()<<" ";
        s.pop();
    }
}

int main(int argc, char *argv[])
{
    int n,e;     //表示输入的顶点数和边数
    while(cin>>n>>e&&e!=0)
    {
        cout<<"Enter your graph"<<endl;
        int i,j;
        int s,t,w;      //表示存在一条边s->t,权值为w
        MGraph g;
        int v0;
        int *dist=(int *)malloc(sizeof(int)*n);
        int *path=(int *)malloc(sizeof(int)*n);
        for(i=0;i<N;i++)
            for(j=0;j<M;j++)
                g.matrix[i][j]=0;
        g.n=n;
        g.e=e;
        printf("Enter %d verticeIndex and %d edges\n",n,e);
        for(i=0;i<e;i++)
        {
            cin>>s>>t>>w;
            g.matrix[s][t]=w;
        }
        cout<<
        cin>>v0;        //输入源顶点
        DijkstraPath(g,dist,path,v0);
        for(i=0;i<n;i++)
        {
            if(i!=v0)
            {
                showPath(path,i,v0);
                cout<<dist[i]<<endl;
            }
        }

    }
    return 0;
}

《Dijkstra算法步骤及代码》

《Dijkstra算法步骤及代码》

    原文作者:Dijkstra算法
    原文地址: https://blog.csdn.net/u013907577/article/details/43912993
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞