图论2之图的遍历

上一篇我们介绍了图的基础,接下来介绍图的遍历

图的遍历是指从图中的任一顶点出发,对图中的所有顶点访问一次且只访问一次。图的遍历操作和树的遍历操作功能相似。图的遍历是图的一种基本操作,图的其它算法如求解图的连通性问题,拓扑排序,求关键路径等都是建立在遍历算法的基础之上。

由于图结构本身的复杂性,所以图的遍历操作也较复杂,主要表现在以下四个方面:
① 在图结构中,没有一个“自然”的首结点,图中任意一个顶点都可作为第一个被访问的结点。
② 在非连通图中,从一个顶点出发,只能够访问它所在的连通分量上的所有顶点,因此,还需考虑如何选取下一个出发点以访问图中其余的连通分量。
③ 在图结构中,如果有回路存在,那么一个顶点被访问之后,有可能沿回路又回到该顶点。

④ 在图结构中,一个顶点可以和其它多个顶点相连,当这样的顶点访问过后,存在如何选取下一个要访问的顶点的问题。

图的遍历通常有深度优先搜索和广度优先搜索两种方式,他们对无向图和有向图都适用。

《图论2之图的遍历》

一、BFS

 深度优先遍历,也有称为深度优先搜索,简称DFS。就像是一棵树的前序遍历。

    它从图中某个结点v出发,访问此顶点,然后从v的未被访问的邻接点出发深度优先遍历图,直至图中所有和v有路径相通的顶点都被访问到。若图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点作起始点,重复上述过程,直至图中的所有顶点都被访问到为止。

《图论2之图的遍历》

《图论2之图的遍历》

《图论2之图的遍历》

1.1、实际应用

《图论2之图的遍历》

《图论2之图的遍历》

《图论2之图的遍历》

《图论2之图的遍历》

 

二、DFS

《图论2之图的遍历》

《图论2之图的遍历》

 

《图论2之图的遍历》《图论2之图的遍历》

《图论2之图的遍历》

 

《图论2之图的遍历》《图论2之图的遍历》

 

《图论2之图的遍历》《图论2之图的遍历》

《图论2之图的遍历》

《图论2之图的遍历》《图论2之图的遍历》

《图论2之图的遍历》《图论2之图的遍历》

LCA最近公共祖先问题:

在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大公共祖先节点。换句话说,就是两个点在这棵树上距离最近的公共祖先节点

所以LCA主要是用来处理当两个点仅有唯一一条确定的最短路径时的路径。

举个例子吧

《图论2之图的遍历》

我们该如何去求这个最近公共祖先呢?

通常会想到最简单粗暴的一个办法:对于每个节点询问,遍历所有的点,时间复杂度为O(n*q),很明显,n和q一般不会很小

常用的求LCA的算法有:Tarjan/DFS+ST/倍增

后两个算法都是在线算法,也很相似,时间复杂度在O(logn)~O(nlogn)之间

有的题目是可以用线段树来做的,但是其代码量很大,时间复杂度也偏高,在O(n)~O(nlogn)之间,优点在于也是简单粗暴

主要介绍一下Tarjan算法

Tarjan(离线)算法就是在一次遍历中把所有询问一次性解决,所以其时间复杂度是O(N*α(N)+Q),其中,α(x)不大于4,N表示问题规模,Q表示询问次数。优点在于相对稳定,也容易理解。(注:这里的复杂度其实应该不是 O(n+q),还需要考虑并查集操作的复杂度 ,但是由于在多数情况下,路径压缩并查集的单次操作复杂度可以看做 O(1),所以写成了 O(n+q))

下面详细介绍一下Tarjan算法的基本思路:

1.任选一个点为根节点,从根节点开始。

2.dfs遍历该点u所有子节点v,并标记这些子节点v已被访问过。

3.若是v还有子节点,返回2,否则下一步。

4.合并v到u上。当一棵子树被搜索完成之后,就把他和他的父亲合并成同一集合;

5.寻找与当前点u有询问关系的点v。

6.若是v已经被访问过了,则可以确认u和v的最近公共祖先为v被合并到的父亲节点a。在搜索当前子树节点的询问时,如果该询问的另一个节点已经被访问过,那么该编号的询问是被标记了的,于是直接输出当前状态下,另一个节点所在的并查集的祖先;

https://www.cnblogs.com/zhouzhendong/p/7256007.html

假设我们有一组数据 9个节点 8条边 联通情况如下:

    1–2,1–3,2–4,2–5,3–6,5–7,5–8,7–9 即下图所示的树

    设我们要查找最近公共祖先的点为9–8,4–6,7–5,5–3;

    设f[]数组为并查集的父亲节点数组,初始化f[i]=i,vis[]数组为是否访问过的数组,初始为0; 《图论2之图的遍历》

    下面开始模拟过程:

    取1为根节点往下搜索发现有两个儿子2和3;

    先搜2,发现2有两个儿子4和5,先搜索4,发现4没有子节点,则寻找与其有关系的点;

    发现6与4有关系,但是vis[6]=0,即6还没被搜过,所以不操作

    发现没有和4有询问关系的点了,返回此前一次搜索,更新vis[4]=1

    《图论2之图的遍历》

    表示4已经被搜完,更新f[4]=2,继续搜5,发现5有两个儿子7和8;

    先搜7,发现7有一个子节点9,搜索9,发现没有子节点,寻找与其有关系的点;

    发现8和9有关系,但是vis[8]=0,即8没被搜到过,所以不操作;

    发现没有和9有询问关系的点了,返回此前一次搜索,更新vis[9]=1

    表示9已经被搜完,更新f[9]=7,发现7没有没被搜过的子节点了,寻找与其有关系的点;

    发现5和7有关系,但是vis[5]=0,所以不操作

    发现没有和7有关系的点了,返回此前一次搜索,更新vis[7]=1

    《图论2之图的遍历》

    表示7已经被搜完,更新f[7]=5,继续搜8,发现8没有子节点,则寻找与其有关系的点;

    发现9与8有关系,此时vis[9]=1,则他们的最近公共祖先find(9)=5

      (find(9)的顺序为f[9]=7–>f[7]=5–>f[5]=5 return 5;)

    发现没有与8有关系的点了,返回此前一次搜索,更新vis[8]=1

 

    表示8已经被搜完,更新f[8]=5,发现5没有没搜过的子节点了,寻找与其有关系的点;

    《图论2之图的遍历》

    发现7和5有关系,此时vis[7]=1,所以他们的最近公共祖先find(7)=5

      (find(7)的顺序为f[7]=5–>f[5]=5 return 5;)

    又发现5和3有关系,但是vis[3]=0,所以不操作,此时5的子节点全部搜完了;

    返回此前一次搜索,更新vis[5]=1,表示5已经被搜完,更新f[5]=2

    发现2没有未被搜完的子节点,寻找与其有关系的点;

    又发现没有和2有关系的点,则此前一次搜索,更新vis[2]=1

    《图论2之图的遍历》

    表示2已经被搜完,更新f[2]=1,继续搜3,发现3有一个子节点6;

    搜索6,发现6没有子节点,则寻找与6有关系的点,发现4和6有关系;

    此时vis[4]=1,所以它们的最近公共祖先find(4)=1;

      (find(4)的顺序为f[4]=2–>f[2]=2–>f[1]=1 return 1;)

    发现没有与6有关系的点了,返回此前一次搜索,更新vis[6]=1,表示6已经被搜完了;

    《图论2之图的遍历》

    更新f[6]=3,发现3没有没被搜过的子节点了,则寻找与3有关系的点;

    发现5和3有关系,此时vis[5]=1,则它们的最近公共祖先find(5)=1

      (find(5)的顺序为f[5]=2–>f[2]=1–>f[1]=1 return 1;)

    发现没有和3有关系的点了,返回此前一次搜索,更新vis[3]=1

    《图论2之图的遍历》

    更新f[3]=1,发现1没有被搜过的子节点也没有有关系的点,此时可以退出整个dfs了。

    经过这次dfs我们得出了所有的答案。

 

 

    原文作者:数据结构之图
    原文地址: https://blog.csdn.net/u014028063/article/details/83145585
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞