数据结构学习笔记:B-/B+树

B-树

B-树是一种非二叉的查找树,即一般化的BST,除了要满足查找树的特性外,还满足以下特性:
一棵m阶的B树:

  • 定义任意非叶子结点最多只有M个儿子;且M>2
  • 根结点的儿子数为[2, M];
  • 除根结点以外的非叶子结点的儿子数为[M/2, M];
  • 每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
  • 非叶子结点的关键字个数=指向儿子的指针个数-1;
  • 非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
  • 非叶子结点的指针:P[1], P[2], …, P[M];
    • 其中P[1]指向关键字小于K[1]的子树
    • P[M]指向关键字大于K[M-1]的子树
    • 其它P[i]指向关键字属于(K[i-1], K[i])的子树;
  • 所有的叶子节点位于同一层

如,M = 3:
《数据结构学习笔记:B-/B+树》

查找

B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点。

  • 若比结点的K1小,则查找该结点P1指向的结点;
  • 若等于节点值,则查找成功,返回
  • 若在两个关键字之间,比如Ki-1与Ki,那么在Pi指向的节点中查找
  • 若比节点的所有关键字大,则在Pm指向的节点中查找
  • 若查找已经到达某个叶节点,则说明查找失败。

插入

  • 利用前述的B-树的查找算法查找关键字的插入位置。若找到,则说明该关键字已经存在,直接返回。
  • 判断该节点是否还有空位置,即判断该结点的关键字总数是否满足n<=m-1。若满足,则说明该结点还有空位置,直接把关键字k插入到该结点的合适位置上。若不满足,说明该结点己没有空位置,需要把结点分裂成两个。
  • 分裂的方法:生成一新结点。把原结点上的关键字和k按升序排序后,从中间位置把关键字(不包括中间位置的关键字)分成两部分。左部分所含关键字放在旧结点中,右部分所含关键字放在新结点中,中间位置的关键字连同新结点的存储位置插入到父结点中。如果父结点的关键字个数也超过(m-1),则要再分裂,再往上插。直至这个过程传到根结点为止。

《数据结构学习笔记:B-/B+树》

《数据结构学习笔记:B-/B+树》

《数据结构学习笔记:B-/B+树》
《数据结构学习笔记:B-/B+树》

删除

利用前述的B-树的查找算法找出该关键字所在的结点。然后根据 k所在结点是否为叶子结点有不同的处理方法。

  • 若该结点为非叶结点,且被删关键字为该结点中第i个关键字key[i],则可从指针son[i]所指的子树中找出最小关键字Y,代替key[i]的位置,然后在叶结点中删去Y。

因此,把在非叶结点删除关键字k的问题就变成了删除叶子结点中的关键字的问题了。

在B-树叶结点上删除一个关键字的方法是:
首先将要删除的关键字 k直接从该叶子结点中删除。然后根据不同情况分别作相应的处理,共有三种可能情况:

  • 如果被删关键字所在结点的原关键字个数n>=ceil(m/2),说明删去该关键字后该结点仍满足B-树的定义。这种情况最为简单,只需从该结点中直接删去关键字即可。
    《数据结构学习笔记:B-/B+树》
  • 如果被删关键字所在结点的关键字个数n等于ceil(m/2)-1,说明删去该关键字后该结点将不满足B-树的定义,需要调整:
    • 如果其左右兄弟结点中有“多余”的关键字,即与该结点相邻的右(左)兄弟结点中的关键字数目大于ceil(m/2)-1。则可将右(左)兄弟结点中最小(大)关键字上移至双亲结点。而将双亲结点中小(大)于该上移关键字的关键字下移至被删关键字所在结点中。
      《数据结构学习笔记:B-/B+树》
    • 被删关键字Ki所在结点和其相邻兄弟结点中的的关键字数目均等于ceil(m/2)-1,假设该结点有右兄弟,且其右兄弟结点地址由其双亲结点指针Ai所指。则在删除关键字之后,它所在结点的剩余关键字和指针,加上双亲结点中的关键字Ki一起,合并到Ai所指兄弟结点中(若无右兄弟,则合并到左兄弟结点中)。如果因此使双亲结点中的关键字数目少于ceil(m/2)-1,则依次类推。
      《数据结构学习笔记:B-/B+树》
      《数据结构学习笔记:B-/B+树》

应用场景

  • 保持键值有序,以顺序遍历
  • 使用层次化的索引来最小化磁盘读取
  • 使用不完全填充的块来加速插入和删除
  • 通过优雅的遍历算法来保持索引平衡

通常用作数据库索引的实现。

B+树

B+树是B-树的变体,也是一种多路搜索树,其定义基本与B-树同,除了:

1. 非叶子结点的子树指针与关键字个数相同;

2. 非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);

3. 为所有叶子结点增加一个链指针;

4. 所有关键字都在叶子结点出现;

《数据结构学习笔记:B-/B+树》

B+树与B树的区别

  • 所有关键字都出现在叶子节点的链表中,且链表中的关键字是有序的
  • 不可能在非叶子结点中命中
  • 非叶子结点相当于是叶子节点的索引,叶子节点才是存储关键字数据的数据层。
  • 更适合文件索引系统

索引原理

一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储在磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级。
所以评价一个数据结构作为索引的优劣最重要的指标就是在查找过程中磁盘I/O操作次数的渐进复杂度
换句话说,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数
下面先介绍内存和磁盘存取原理,然后再结合这些原理分析B-/+Tree作为索引的效率。

主存存取原理

目前计算机使用的主存基本都是随机读写存储器(RAM)。
从抽象角度看,主存是一系列的存储单元组成的矩阵,每个存储单元存储固定大小的数据。每个存储单元有唯一的地址,现代主存的编址规则比较复杂,这里将其简化成一个二维地址:通过一个行地址和一个列地址可以唯一定位到一个存储单元。

主存的存取过程如下:
当系统需要读取主存时,则将地址信号放到地址总线上传给主存,主存读到地址信号后,解析信号并定位到指定存储单元,然后将此存储单元数据放到数据总线上,供其它部件读取。

写主存的过程类似,系统将要写入单元地址和数据分别放在地址总线和数据总线上,主存读取两个总线的内容,做相应的写操作。

这里可以看出,主存存取的时间仅与存取次数呈线性关系

磁盘存取原理

索引一般以文件形式存储在磁盘上,索引检索需要磁盘I/O操作。与主存不同,磁盘I/O存在机械运动耗费,因此磁盘I/O的时间消耗是巨大的。

磁盘预读

由于磁盘读取速度较慢,因此为了提高效率要减少磁盘IO,为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中著名的局部性原理

当一个数据被用到时,其附近的数据也通常会马上被使用。

由于磁盘顺序读取的效率很高,因此对于具有局部性的程序来说,预读可以提高I/O效率。

预读的长度一般为页(page)的整倍数
页是计算机管理存储器的逻辑块,硬件及操作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储块称为一页(在许多操作系统中,页得大小通常为4k),主存和磁盘以页为单位交换数据。
当程序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。

B-/+Tree索引的性能分析

先从B-Tree分析,根据B-Tree的定义,可知检索一次最多需要访问h个节点。
数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。

每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。

B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为O(h)=O(logdN)

综上所述,用B-Tree作为索引结构效率是非常高的。

B+Tree更适合外存索引,原因和内节点出度d有关。从上面分析可以看到,d越大索引的性能越好,而出度的上限取决于节点内key和data的大小:
由于B+Tree内节点去掉了data域,因此可以拥有更大的出度,拥有更好的性能。

MySQL索引实现

在MySQL中,索引属于存储引擎级别的概念,不同存储引擎对索引的实现方式是不同的。
对于MyISAM引擎:
MyISAM引擎使用B+Tree作为索引结构,叶节点的data域存放的是数据记录的地址。下图是MyISAM索引的原理图:

《数据结构学习笔记:B-/B+树》

MyISAM中索引检索的算法为首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址,读取相应数据记录。

    原文作者:B树
    原文地址: https://blog.csdn.net/crystal6918/article/details/78073721
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞