3、B-树的删除

(1)删除操作的两个步骤
     第一步骤:在树中查找被删关键字K所在的地点

     第二步骤:进行删去K的操作

(2)删去K的操作

     B-树是二叉排序树的推广,中序遍历B-树同样可得到关键字的有序序列(具体遍历算法【参见练习】)。任一关键字K的中序前趋(后继)必是K的左子树(右子树)中最右(左)下的结点中最后(最前)一个关键字。

     若被删关键字K所在的结点非树叶,则用K的中序前趋(或后继)K’取代K,然后从叶子中删去K’。从叶子*x开始删去某关键字K的三种情形为:

     情形一:若x->keynum>Min,则只需删去K及其右指针(*x是叶子,K的右指针为空)即可使删除操作结束。

 
注意:

   
 《3、B-树的删除》

     情形二:若x->keynum=Min,该叶子中的关键字个数已是最小值,删K及其右指针后会破坏B-树的性质(3)。若*x的左(或右)邻兄弟结点*y中的关键字数目大于Min,则将*y中的最大(或最小)关键字上移至双亲结点*parent中,而将*parent中相应的关键字下移至x中。显然这种移动使得双亲中关键字数目不变;*y被移出一个关键字,故其keynum减1,因它原大于Min,故减少1个关键字后keynum仍大于等于Min;而*x中已移入一个关键字,故删K后*x中仍有Min个关键字。涉及移动关键字的三个结点均满足B-树的性质(3)。 请读者验证,上述操作后仍满足B-树的性质(1)。移动完成后,删除过程亦结束。

     情形三:若*x及其相邻的左右兄弟(也可能只有一个兄弟)中的关键字数目均为最小值Min,则上述的移动操作就不奏效,此时须*x和左或右兄弟合并。不妨设*x有右邻兄弟*y(对左邻兄弟的讨论与此类似),在*x中删去K及其右子树后,将双亲结点*parent中介于*x和*y之间的关键字K,作为中间关键字,与并x和*y中的关键字一起”合并”为一个新的结点取代*x和*y。因为*x和*y原各有Min个关键字,从双亲中移人的K’抵消了从*x中删除的K,故新结点中恰有2Min(即2「m/2」-2≤m-1)个关键字,没有破坏B-树的性质(3)。但由于K’从双亲中移到新结点后,相当于从*parent中删去了K’,若parent->keynum原大于Min,则删除操作到此结束;否则,同样要通过移动*parent的左右兄弟中的关键字或将*parent与其 左右兄弟合并的方法来维护B-树性质。最坏情况下,合并操作会向上传播至根,当根中只有一个关键字时,合并操作将会使根结点及其两个孩子合并成一个新的根,从而使整棵树的高度减少一层。

     删除5阶B-树的h、r、p、 d等关键字的过程【
参见动画演示】。  

  分析:

     第1个被删的关键字h是在叶子中,且该叶子的keynum>Min(5阶B-树的Min=2),故直接删去即可。第2个删去的r不在叶子中,故用中序后继s取代r,即把s复制到r的位置上,然后从叶子中删去s。第3个删去的p所在的叶子中的关键字数目是最小值Min,但其右兄弟的keynum>Min,故可以通过左移,将双亲中的s移到p所在的结点,而将右兄弟中最小(即最左边)的关键字t上移至双亲取代s。当删去d时,d所在的结点及其左右兄弟均无多余的关键字,故需将删去d后的结点与这两个兄弟中的一个(图中是选择左兄弟(ab))及其双亲中分隔这两个被合并结点的关键字c合并在一起形成一个新结点(abce)。但因为双亲中失去c后keynum<Min,故必须对该结点做调整操作,此时它只有一个右兄弟,且右兄弟无多余的关键字,不可能通过移动关键字来解决。因此引起再次合并,因根只有一个关键字,故合并后树高度减少一层,从而得到上图的最后一个图。 

    原文作者:B树
    原文地址: https://blog.csdn.net/lane3010/article/details/1721559
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞

发表评论

电子邮件地址不会被公开。 必填项已用*标注