【串和序列处理 5】总结---自动机,KMP算法,Extend-KMP,后缀树,后缀数组,trie树,trie图及其应用

涉及到字符串的问题,无外乎这样一些算法和数据结构:自动机,KMP算法,Extend-KMP,后缀树,后缀数组,trie树,trie图及其应用。当然这些都是比较高级的数据结构和算法,而这里面最常用和最熟悉的大概是kmp,即使如此还是有相当一部分人也不理解kmp,更别说其他的了。当然一般的字符串问题中,我们只要用简单的暴力算法就可以解决了,然后如果暴力效率太低,就用个hash。当然hash也是一个面试中经常被用到的方法。这样看来,这样的一些算法和数据结构实际上很少会被问到,不过如果使用它们一般可以得到很好的线性复杂度的算法。

老实说,字符串问题的确挺复杂的,出来一个如果用暴力,hash搞不定,就很难再想其他的方法,当然有些可以用动态规划。下图主要说明下这些算法数据结构之间的关系。图中黄色部分主要写明了这些算法和数据结构的一些关键点。

《【串和序列处理 5】总结---自动机,KMP算法,Extend-KMP,后缀树,后缀数组,trie树,trie图及其应用》

图中可以看到这样一些关系:extend-kmp 是kmp的扩展;ac自动机是kmp的多串形式;它是一个有限自动机;而trie图实际上是一个确定性有限自动机;ac自动机,trie图,后缀树实际上都是一种trie;后缀数组和后缀树都是与字符串的后缀集合有关的数据结构;trie图中的后缀指针和后缀树中的后缀链接这两个概念及其一致。
后缀树的构造可以用Ukkonen算法在线性时间内完成[,但是不仅构造算法实现相当复杂,而且后缀树存在着致命弱点:空间开销大且对大字母表时间效率不理想。

kmp

    首先这个匹配算法,主要思想就是要充分利用上一次的匹配结果,找到匹配失败时,模式串可以向前移动的最大距离。这个最大距离,必须要保证不会错过可能的匹配位置,因此这个最大距离实际上就是模式串当前匹配位置的next数组值。也就是max{Aj 是 Pi 的后缀  j < i},pi表示字符串A[1…i],Aj表示A[1…j]。模式串的next数组计算则是一个自匹配的过程。也是利用已有值next[1…i-1]计算next[i]的过程。我们可以看到,如果A[i] = A[next[i-1]+1] 那么next[i] = next[i-1],否则,就可以将模式串继续前移了。

整个过程是这样的:

void next_comp(char * str){

   int next[N+1];

   int k = 0;

   next[1] = 0;

   //循环不变性,每次循环的开始,k = next[i-1] 

   for(int i = 2 ; i <= N ; i++){

      //如果当前位置不匹配,或者还推进到字符串开始,则继续推进

      while(A[k+1] != A[i] && k != 0){

           k = next[k];

      }     

      if(A[k+1] == A[i]) k++;

      next[i] = k;

   } 

}

    复杂度分析:从上面的过程可以看出,内部循环再不断的执行k = next[k],而这个值必然是在缩小,也就是是没执行一次k至少减少1;另一方面k的初值是0,而最多++ N次,而k始终保持非负,很明显减少的不可能大于增加的那些,所以整个过程的复杂度是O(N)。

    上面是next数组的计算过程,而整个kmp的匹配过程与此类似。

extend-kmp

    为什么叫做扩展-kmp呢,首先我们看它计算的内容,它是要求出字符串B的后缀与字符串A的最长公共前缀。extend[i]表示B[i…B_len] 与A的最长公共前缀长度,也就是要计算这个数组。观察这个数组可以知道,kmp可以判断A是否是B的一个子串,并且找到第一个匹配位置?而对于extend[]数组来说,则可以利用它直接解决匹配问题,只要看extend[]数组元素是否有一个等于len_A即可。显然这个数组保存了更多更丰富的信息,即B的每个位置与A的匹配长度。

    计算这个数组extend也采用了于kmp类似的过程。首先也是需要计算字符串A与自身后缀的最长公共前缀长度。我们设为next[]数组。当然这里next数组的含义与kmp里的有所过程。但它的计算,也是利用了已经计算出来的next[1…i-1]来找到next[i]的大小,整体的思路是一样的。

    具体是这样的:观察下图可以发现

《【串和序列处理 5】总结---自动机,KMP算法,Extend-KMP,后缀树,后缀数组,trie树,trie图及其应用》

首先在1…i-1,要找到一个k,使得它满足k+next[k]-1最大,也就是说,让k加上next[k]长度尽量长。实际上下面的证明过程中就是利用了每次计算后k+next[k]始终只增不减,而它很明显有个上界,来证明整个计算过程复杂度是线性的。如下图所示,假设我们已经找到这样的k,然后看怎么计算next[i]的值。设len = k+next[k]-1(图中我们用Ak代表next[k]),分情况讨论:

  • 如果len < i 也就是说,len的长度还未覆盖到Ai,这样我们只要从头开始比较A[i…n]与A的最长公共前缀即可,这种情况下很明显的,每比较一次,必然就会让i+next[i]-1增加一.
  • 如果len >= i,就是我们在图中表达的情形,这时我们可以看到i这个位置现在等于i-k+1这个位置的元素,这样又分两种情况:
    1. 如果 L = next[i-k+1] >= len-i+1,也就是说L处在第二条虚线的位置,这样我们可以看到next[i]的大小,至少是len-i+1,然后我们再从此处开始比较后面的还能否匹配,显然如果多比较一次,也会让i+A[i]-1多增加1.
    2. 如果 L < len-i+1 也就是说L处在第一条虚线位置,我们知道A与Ak在这个位置匹配,但Ak与Ai-k+1在这个位置不匹配,显然A与与Ai-k+1在这个位置也不会匹配,故next[i]的值就是L。这样next[i]的值就被计算出来了,从上面的过程中我们可以看到,next[i]要么可以直接由k这个位置计算出来,要么需要在逐个比较,但是如果需要比较,则每次比较会让k+next[k]-1的最大值加1.而整个过程中这个值只增不减,而且它有一个很明显的上界k+next[k]-1 < 2*len_A,可见比较的次数要被限制到这个数值之内,因此总的复杂度将是O(N)的。 

 

    原文作者:Trie树
    原文地址: https://blog.csdn.net/zhujunwsk/article/details/7189895
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞