《深入理解Java虚拟机——JVM高级特性与最佳实践》学习笔记——Java内存模型与线程

Java内存模型与线程

多任务处理目的:
1.充分利用计算机处理器的能力(磁盘I/O、网络通信、数据库访问相比计算机的运算速度要慢的多)
2.同时应对多个客户端的请求,衡量一个服务性能的高低好坏,每秒事务处理数(TPS)是最重要的指标之一,它代表着一秒内服务端平均能响应的请求总数,而TPS值与程序的并发能力又有非常密切的关系。对于计算量相同的任务,程序线程并发协调得越有条不紊,效率自然就会越高,反之,线程之间频繁阻塞甚至死锁,将会大大降低程序的并发能力

Java内存模型

Java虚拟机规范中试图定义一种Java内存模型(JMM)来屏蔽掉各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的内存访问效果

主内存与工作内存

Java内存模型的主要目标是定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样的底层细节,此处的变量包括了实例字段、静态字段和构成数组对象的元素,但不包括局部变量与方法参数,因为后者是线程私有的,不会被共享

Java内存模型规定了所有的变量都存储在主内存中,每条线程还有自己的工作内存,线程的工作内存中保存了被该线程使用到的变量的主内存副本拷贝,线程对变量的所有操作(读取、赋值等)都必须在工作内存中进行,而不能直接读写主内存中的变量。不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成,交互关系如图所示

《《深入理解Java虚拟机——JVM高级特性与最佳实践》学习笔记——Java内存模型与线程》

内存间交互操作

关于主内存与工作内存之间具体的交互协议,即一个变量如何从主内存拷贝到工作内存、如何从工作内存同步回主内存之类的实现细节,Java内存模型中定义了以下8种操作来完成,虚拟机实现时必须保证下面提及的每一种操作都是原子的、不可再分的

  • lock(锁定):作用于主内存的变量,它把一个变量标识为一条线程独占的状态
  • unlock(解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定
  • read(读取):作用于主内存的变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用
  • load(载入):作用于工作内存的变量,它把read操作从内存中得到的变量值放入工作内存的变量副本中
  • use(使用):作用于工作内存的变量,它把工作内存中一个变量的值传递给执行引擎,每当虚拟机遇到一个需要使用到变量的值的字节码指令时将会执行这个操作
  • assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收到的值赋给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作
  • store(存储):作用于工作内存的变量,它把工作内存中一个变量的值传送到主内存中,以便随后的write操作使用
  • write(写入):作用于主内存的变量,它把store操作从工作内存得到的变量的值放入主内存的变量中

Java内存模型还规定了在执行上述8种基本操作时必须满足如下规则:

  • 不允许read和load、store和write操作之一单独出现
  • 不允许一个线程丢弃它的最近的assgin操作,即变量在工作内存中改变了之后必须把该变化同步回主内存
  • 不允许一个线程无原因地(没有发生过任何assign)把数据从线程的工作内存同步回主内存中
  • 一个新的变量只能在主内存中”诞生”,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量
  • 一个变量在同一时刻只允许一条线程对其进行lock操作,但lock操作可以被同一条线程重复执行多次,多次执行lock后,只有执行相同次数的unlock操作,变量才会被解锁
  • 如果对一个变量执行lock操作,那将会清空工作内存中此变量的值,在执行引擎使用这个变量前,需要重新执行load或assign操作初始化变量的值
  • 如果一个变量事先没有被lock操作锁定,那就不允许对它执行unlock操作,也不允许去unlock一个被其他线程锁定住的变量
  • 对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write操作)

对于volatile型变量的特殊规则

关键字volatile可以说是Java虚拟机提供的最轻量级的同步机制,但是它并不容易完全被正确、完整地理解,以至于许多程序员都习惯不去使用它,遇到需要处理多线程数据竞争问题的时候一律使用synchronized来进行同步

当一个变量定义为volatile之后,它将具备两种特性,第一是保证此变量对所有线程的可见性,这里的”可见性”是指当一条线程修改了这个变量的值,新值对于其他线程来说是可以立即得知的

但是volatile变量只能保证可见性,在不符合以下两条规则的运算场景中,仍要通过加锁(使用synchronized或java.util.concurrent中的原子类)来保证原子性

  • 运算结果并不依赖变量的当前值,或者能够确保只有单一的线程修改变量的值
  • 变量不需要与其他的状态变量共同参与不变约束

使用volatile变量的第二个语义是禁止指令重排序优化,普通的变量仅仅会保证在该方法的执行过程中所有依赖赋值结果的地方都能获取到正确的结果,而不能保证变量赋值操作的顺序与程序代码中的执行顺序一致

使用volatile修饰的变量,赋值后多执行了一个”lock addl 0x0,( 0x0,(%esp)”(把ESP寄存器的值加0)是一个空操作,它的作用是使得本CPU的Cache写入了内存,该写入动作也会引起别的CPU或者别的内核无效化其Cache,这种操作相当于对Cache中的变量做了一次”store”和”write”操作,所以通过这样一个空操作,可让前面volatile变量的修改对其他CPU立即可见

指令重排序是指CPU采用了允许将多条指令不按程序规定的顺序分开发送给各相应电路单元处理(要保证有依赖的顺序不能重排)

volatile变量读操作的性能消耗与普通变量几乎没有什么差别,但是写操作则可能会慢一些,因为它需要在本地代码中插入许多内存屏障指令来保证处理器不发生乱序执行。不过即便如此,大多数场景下volatile的总开销仍然要比锁低,我们在volatile与锁之中选择的唯一依据仅仅是volatile的语义能否满足使用场景的需求

对于long和double型变量的特殊规则

Java内存模型要求lock、unlock、read、load、assign、use、store、write这8个操作都具有原子性,但是对于64位的数据类型(long和double),在模型中特别定义了一条相对宽松的规定:允许虚拟机将没有被volatile修饰的64位数据的读写操作划分为两次32位的操作来进行

在实际开发中,目前各种平台下的商用虚拟机几乎都选择把64位数据的读写操作作为原子操作来对待

原子性、可见性与有序性

原子性(Atomicity):由Java内存模型来直接保证的原子性变量操作包括read、load、assign、use、store和write
可见性(Visibility):可见性是指当一个线程修改了共享变量的值,其他线程能够立即得知这个修改,volatile、synchronized和final关键字都能实现可见性
有序性(Ordering):如果在本线程内观察,所有的操作都是有序的, 如果在一个线程中观察另一个线程,所有的操作都是无序的;前半句是指”线程内表现为串行的语义”,后半句是指”指令重排序”现象和”工作内存与主内存同步延迟”现象。volatile关键字本身就包含了禁止指令重排序的语义,而synchronized则是由”一个变量在同一时刻只允许一条线程对其进行lock操作”这条规则获得的,这条规则决定了持有同一个锁的两个同步块只能串行地进入

先行发生原则

这个原则是判断数据是否存在竞争、线程是否安全的主要依据。先行发生是Java内存模型中定义的两项操作之间的偏序关系,如果说操作A先行发生于操作B,操作A产生的影响能被操作B观察到,”影响”包括修改了内存中共享变量的值、发送了消息、调用了方法等

Java内存模型下有一些”天然的”先行发生关系,这些先行发送关系无须任何同步器协助就已经存在,可以在编码中直接使用,如果两个操作之间的关系不在此列,并且无法从下列规则推导出来的话,它们就没有顺序性保障,虚拟机可以对它们随意地进行重排序

  • 程序次序规则(Program Order Rule):在一个线程内,按照程序代码顺序,书写在前面的操作先行发生于书写在后面的操作
  • 管程锁定规则(Monitor Lock Rule):一个unlock操作先行发生于后面对同一个锁的lock操作,这里必须强调的是同一个锁
  • volatile变量规则(Volatile Variable Rule):对一个volatile变量的写操作先行发生于后面对这个变量的读操作
  • 线程启动规则(Thread Start Rule):Thread对象的start()方法先行发生于此线程的每一个动作
  • 线程终止规则(Thread Termination Rule):线程中的所有操作都先行发生于对此线程的终止检测,我们可以通过Tread.join()方法结束、Thread.isAlive()的返回值等手段检测到线程已经终止执行
  • 线程中断规则(Thread Interrupt Rule):对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过Thread.interrupted()方法检测到是否有中断发生
  • 对象终结规则(Finalizer Rule):一个对象的初始化完成(构造函数执行结束)先行发生于它的finalize()方法的开始
  • 传递性(Transitivity):如果操作A先行发生于操作B,操作B先行发生于操作C,那就可以得出操作A先行发生于操作C的结论

Java与线程

线程的实现

线程是比进程更轻量级的调度执行单位,线程的引入,可以把一个进程的资源分配和执行调度分开,各个线程既可以共享进程资源(内存地址、文件I/O等),又可以独立调度(线程是CPU调度的基本单位)

实现线程主要有3种方式:使用内核线程实现、使用用户线程实现和使用用户线程加轻量级进程混合实现

  • 1.使用内核线程实现
    内核线程(KLT)就是直接由操作系统内核支持的线程,这种线程由内核来完成线程切换,内核通过操纵调度器(Scheduler)对线程进行调度,并负责将线程的任务映射到各个处理器上,每个内核线程可以视为内核的一个分身,这样操作系统就有能力同时处理多件事情,支持多线程的内核就叫做多线程内核

程序一般不会直接去使用内核线程,而是去使用内核线程的一种高级接口——轻量级进程(LWP),轻量级进程就是通常意义上所讲的线程,由于每个轻量级进程都由一个内核线程支持,因此只有先支持内核线程,才能有轻量级进程,这种轻量级进程与内核线程之间1:1的关系称为一对一的线程模型,如下图所示

《《深入理解Java虚拟机——JVM高级特性与最佳实践》学习笔记——Java内存模型与线程》

由于内核线程的支持,每个轻量级进程都成为一个独立的调度单元,即使有一个轻量级进程在系统调用中阻塞了,也不会影响整个进程继续工作,但是轻量级进程具有它的局限性:首先,由于是基于内核线程实现的,所以各种线程操作,如创建、析构及同步,都需要进行系统调用。而系统调用的代价相对较高,需要在用户态和内核态中来回切换,其次,每个轻量级进程都需要有一个内核线程的支持,因此轻量级进程要消耗一定的内核资源(如内核线程的栈空间),因此一个系统支持轻量级进程的数量是有限的

  • 2.使用用户线程实现
    从广义上来讲,一个线程只要不是内核线程,就可以认为是用户线程(UT)

从狭义上的用户线程指的是完全建立在用户空间的线程库上,系统内核不能感知线程存在的实现。用户线程的建立、同步、销毁和调度完全在用户态中完成,不需要内核的帮助。如果程序实现得当,这种线程不需要切换到内核态,因此操作可以是非常快速且低消耗的,也可以支持规模更大的线程数量,部分高性能数据库中的多线程就是由用户线程实现的,这种进程与用户线程之间1:N的关系称为一对多的线程模型,如下图所示

《《深入理解Java虚拟机——JVM高级特性与最佳实践》学习笔记——Java内存模型与线程》

使用用户线程的优势在于不需要系统内核支援,劣势也在于没有系统内核的支援,所有的线程操作都需要用户程序自己处理。线程的创建、切换和调度都是需要考虑的问题,而且由于操作系统只把处理器资源分配到进程,那诸如”阻塞如何处理”、”多处理器系统中如何将线程映射到其他处理器上”这类问题解决起来将会异常困难,甚至不可能完成,因而使用用户线程实现的程序一般都比较复杂

  • 3.使用用户线程加轻量级进程混合实现
    线程除了依赖内核线程实现和完全由用户程序自己实现之外,还有一种将内核线程与用户线程一起使用的实现方式,在这种混合实现下,既存在用户线程,也存在轻量级进程

用户线程还是完全建立在用户空间中,因此用户线程的创建、切换、析构等操作依然廉价,并且可以支持大规模的用户线程并发,而操作系统提供支持的轻量级进程则作为用户线程和内核线程之间的桥梁,这样可以使用内核提供的线程调度功能及处理器映射,并且用户线程的系统调用要通过轻量级线程来完成,大大降低了整个进程被完全阻塞的风险。在这种混合模式中,用户线程与轻量级进程的数量比是不定的,即为N:M的关系,即多对多的线程模型,如下图所示

《《深入理解Java虚拟机——JVM高级特性与最佳实践》学习笔记——Java内存模型与线程》

  • 4.Java线程的实现
    Java线程在JDK1.2之前,是基于称为”绿色线程”的用户线程实现的,而在JDK1.2中,线程模型替换为基于操作系统原生线程模型来实现

对于Sun JDK来说,它的Windows版与Linux版都是使用一对一的线程模型来实现的,一条Java线程就映射到一条轻量级进程之中,因为Windows和Linux系统提供的线程模型就是一对一的

Java线程调度

线程调度是指系统为线程分配处理器使用权的过程,主要调度方式有两种,分别是协同式线程调度和抢占式线程调度

如果使用协同式调度的多线程系统,线程的执行时间由线程本身来控制,线程把自己的工作执行完了之后,要主动通知系统切换到另外一个线程上。协同式多线程的最大好处是实现简单,而且由于线程要把自己的事情干完后才进行线程切换,切换操作对线程自己是可知的,所以没有什么线程同步的问题;它的坏处也很明显,线程执行时间不可控制,甚至如果一个线程编写有问题,一直不告知系统进行线程切换,那么程序就会一直阻塞在那里

如果使用抢占式调度的多线程系统,那么每个线程将由系统来分配执行时间,线程的切换不由线程本身来决定,在这种实现线程调度的方式下,线程的执行时间是系统可控的,也不会有一个线程导致整个进程阻塞的问题,Java使用的线程调度方式就是抢占式调度

虽然Java线程调度是系统自动完成的,但是还是可以”建议”系统给某些线程多分配一点执行时间,另外的一些线程则可以少分配一点——这项操作可以通过设置线程优先级来完成,Java语言一共设置了10个级别的线程优先级(Thread.MIN_PRIORITY至Thread.MAX_PRIORITY),在两个线程同时处于Ready状态时,优先级越高的线程越容易被系统选择执行

不过,线程优先级并不是太靠谱,不仅仅在一些平台上不同的优先级实际会变得相同,而且优先级可能会被系统自行改变

状态转换

Java语言定义了5种线程状态,在任意一个时间点,一个线程只能有且只有其中的一种状态,这5种状态分别如下

  • 新建(New):创建后尚未启动的线程处于这种状态
  • 运行(Runable):Runable包括了操作系统线程状态中的Running和Ready,也就是处于此状态的线程有可能正在执行,也有可能正在等待着CPU为它分配执行时间
  • 无限期等待(Waiting):处于这种状态的线程不会被分配CPU执行时间,它们要等待被其他线程显式地唤醒,以下方法会让线程陷入无限期的等待状态:

    • 没有设置Timeout参数的Object.wait()方法
    • 没有设置Timeout参数的Thread.join()方法
    • LockSupport.park()方法
  • 限期等待(Timed Waiting):处于这种状态的线程也不会被分配 CPU执行时间,不过无须等待被其他线程显式地唤醒,在一定时间之后它们会由系统自动唤醒,以下方法会让线程进入限期等待状态:

    • Thread.sleep()方法
    • 设置了Timeout参数的Object.wait()方法
    • 设置了Timeout参数的Thread.join()方法
    • LockSupport.parkNanos()方法
    • LockSupport.parkUntil()方法
  • 阻塞(Blocked):线程被阻塞了,”阻塞状态”与”等待状态”的区别是:”阻塞状态”在等待着获取到一个排他锁,这个事件将在另外一个线程放弃这个锁的时候发生,而”等待状态”则是在等待一段时间,或者唤醒动作的发生,在程序等待进入同步区域的时候,线程将进入这种状态
  • 结束(Terminated):已终止线程的线程状态,线程已经结束执行

上述5种状态在遇到特定事件发生的时候将会互相转换,它们的转换关系如下图所示

《《深入理解Java虚拟机——JVM高级特性与最佳实践》学习笔记——Java内存模型与线程》

    原文作者:java内存模型
    原文地址: https://blog.csdn.net/benhuo931115/article/details/65435069
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞