Java集合框架--LinkedList源码分析(基于JDK1.8)

 

1、概述

通过前面的分析,我们知道了ArrayList是基于数组实现的,因此比较适合查询和修改比较多的操作。而LinkedList是基于双向链表实现的,因此比较适合添加和删除。

2、LinkedList数据结构

《Java集合框架--LinkedList源码分析(基于JDK1.8)》

我们可以看见LinkedList是一个基于双向链表的数据结构(有指向前一个和指向后一个的引用),因此如果我们要遍历集合,可以进行双向遍历。

3、源码分析

3.1类的继承关系

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable

LinkedList的类继承结构很有意思,我们着重要看是Deque接口,Deque接口表示是一个双端队列,那么也意味着LinkedList是双端队列的一种实现,所以,基于双端队列的操作在LinkedList中全部有效。

3.2类的内部类

private static class Node<E> {
        E item; // 数据域
        Node<E> next; // 后继
        Node<E> prev; // 前驱
        
        // 构造函数,赋值前驱后继
        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

上面的内部类就是实际的节点,用于存放数据的地方。

3.3类的属性

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
    // 实际元素个数
    transient int size = 0;
    // 头结点
    transient Node<E> first;
    // 尾结点
    transient Node<E> last;
}  

3.4构造函数

public LinkedList() {
}

有参构造函数

public LinkedList(Collection<? extends E> c) {
        // 调用无参构造函数
        this();
        // 添加集合中所有的元素
        addAll(c);
    }

我们可以看见上面两个构造函数,第二个构造函数最终调用了addAll来将所有的数据加入集合。

3.5核心函数分析

3.5.1add

public boolean add(E e) {
        // 添加到末尾
        linkLast(e);
        return true;
    }

通过上面我们能可以看出主要是调用了函数linkLast来讲元素添加到双向链表的末端。

void linkLast(E e) {
        // 保存尾结点,l为final类型,不可更改
        final Node<E> l = last;
        // 新生成结点的前驱为l,后继为null
        final Node<E> newNode = new Node<>(l, e, null);
        // 重新赋值尾结点
        last = newNode;    
        if (l == null) // 尾结点为空
            first = newNode; // 赋值头结点
        else // 尾结点不为空
            l.next = newNode; // 尾结点的后继为新生成的结点
        // 大小加1    
        size++;
        // 结构性修改加1
        modCount++;
    }

可以看见添加元素的操作其实就是简单地创建节点,然后改变前驱和后继的引用。

3.5.2addAll

// 添加一个集合
    public boolean addAll(int index, Collection<? extends E> c) {
        // 检查插入的的位置是否合法
        checkPositionIndex(index);
        // 将集合转化为数组
        Object[] a = c.toArray();
        // 保存集合大小
        int numNew = a.length;
        if (numNew == 0) // 集合为空,直接返回
            return false;

        Node<E> pred, succ; // 前驱,后继
        if (index == size) { // 如果插入位置为链表末尾,则后继为null,前驱为尾结点
            succ = null;
            pred = last;
        } else { // 插入位置为其他某个位置
            succ = node(index); // 寻找到该结点
            pred = succ.prev; // 保存该结点的前驱
        }

        for (Object o : a) { // 遍历数组
            @SuppressWarnings("unchecked") E e = (E) o; // 向下转型
            // 生成新结点
            Node<E> newNode = new Node<>(pred, e, null);
            if (pred == null) // 表示在第一个元素之前插入(索引为0的结点)
                first = newNode;
            else
                pred.next = newNode;
            pred = newNode;
        }

        if (succ == null) { // 表示在最后一个元素之后插入
            last = pred;
        } else {
            pred.next = succ;
            succ.prev = pred;
        }
        // 修改实际元素个数
        size += numNew;
        // 结构性修改加1
        modCount++;
        return true;
    }

从上面可以看出对addAll方法的操作其实就是从指定位置开始创建新节点,并遍历设置前驱和后继。

上面有一个函数node,我们查看源码

Node<E> node(int index) {
        // 判断插入的位置在链表前半段或者是后半段
        if (index < (size >> 1)) { // 插入位置在前半段
            Node<E> x = first; 
            for (int i = 0; i < index; i++) // 从头结点开始正向遍历
                x = x.next;
            return x; // 返回该结点
        } else { // 插入位置在后半段
            Node<E> x = last; 
            for (int i = size - 1; i > index; i--) // 从尾结点开始反向遍历
                x = x.prev;
            return x; // 返回该结点
        }
    }

 

可以看见函数根据index是否大于size的一半来判断从前还是从后开始遍历,这样就可以达到最快速遍历。

 

3.5.3remove

public boolean remove(Object o) {
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

从上面我们可以看出remove方法其实就是根据元素在链表中遍历找到相等的元素,然后调用unlink方法。

E unlink(Node<E> x) {
        // 保存结点的元素
        final E element = x.item;
        // 保存x的后继
        final Node<E> next = x.next;
        // 保存x的前驱
        final Node<E> prev = x.prev;
        
        if (prev == null) { // 前驱为空,表示删除的结点为头结点
            first = next; // 重新赋值头结点
        } else { // 删除的结点不为头结点
            prev.next = next; // 赋值前驱结点的后继
            x.prev = null; // 结点的前驱为空,切断结点的前驱指针
        }

        if (next == null) { // 后继为空,表示删除的结点为尾结点
            last = prev; // 重新赋值尾结点
        } else { // 删除的结点不为尾结点
            next.prev = prev; // 赋值后继结点的前驱
            x.next = null; // 结点的后继为空,切断结点的后继指针
        }

        x.item = null; // 结点元素赋值为空
        // 减少元素实际个数
        size--; 
        // 结构性修改加1
        modCount++;
        // 返回结点的旧元素
        return element;
    }

我们可以看出其实unlink方法实现的就是将节点从链表的断开,而要达到这个目的就是修改相应的前后节点引用。

 

    原文作者:java集合源码分析
    原文地址: https://blog.csdn.net/ONROAD0612/article/details/77334100
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞