Java 集合系列(17):LinkedHashMap源码分析

转自:https://blog.csdn.net/caoxiaohong1005/article/details/79909083

1.特性分析

说明:因为LinkedHashMap单词太长,所以以下都用LHM替代

  • 基本数据结构:数组+双向链表+红黑树
  • 因为继承HashMap,故常用属性和HashMap都一样。
  • 对于几个node指针的分析: 
    • HashMap中的Map.Entry:只有next
    • LinkedHashMap中的Entry:before,after,next。其中next指针因为继承Map.Entry得到
    • HashMap和LinkedHashMap公有的TreeNode:left,right,parent,pre,before,after,next,后三个因为继承LinkedHashMap.Entry得到。
  • 对“哈希表和双向链表都实现了Map接口”的理解 
    因为LHM中每一个entry在内存中只有一个,所以针对某一个entry,无论是哈希表中的节点还是双向链表中的节点都用的是同一个entry。通过继承Map.Entry,并添加指针before,after从而获得LHM的entry。因此得到上述结论。
  • 双向链表种entry的排序 
    • 域accessOrder进行控制。 
      • false:构造函数的默认值,表示按照entry的插入顺序进行排序 ,故每插入一个新的entry则添加到双向链表的尾部。(注意:如果插入entry的key之前就存在双向链表中,则此次插入操作只会更改value,不会更改原双向链表各个entry的顺序)
      • true:表示按entry的访问顺序进行排序,根据LRU原则,最新访问的entry排列在双链表的尾部。
    • 默认为:按entry的插入顺序进行排序,故后插入的entry在双链表的尾部。
  • LHM和TreeMap都实现了entry的排序,有什么区别: 
    • TreeMap按照key排序,而LHM按照entry的插入or访问顺序排序。
    • 因为LHM保持entry有序的方式是调整双向链表的before,after指针,而TreeMap保持entry有序的方式是对tree结构作调整,因此显然LHM的代价更小。
  • 特殊的构造函数LinkedHashMap(int,float,boolean) 
    • boolean=true时,迭代器顺序遵循LRU规则,最近最少访问的entry会被最先遍历到。这种Map非常适合构建LRU缓存。
  • removeEldestEntry(Map.Entry) 
    • 通过覆写,可以实现:当添加新的映射到map中时,强制自动移除过期的映射.
    • 过期数据: 
      • 双向链表按插入entry排序,则为最早插入双向链表的entry。
      • 双向链表按访问entry排序,则为最近最少访问的entry。
  • 和HashMap的比较 
    • 常规操作,如add,contains,remove等,比HashMap稍微差一些,因为需要维护双向链表。
    • 视图迭代器执行时间长短的影响因素 
      • LHM:和size成比例
      • HashMap:和capacity成比例
      • 因此HashMap相对比较费时,因为size<=capacity。
  • 非线程安全,元素允许为null
  • 关于结构修改定义 
    和HashMap相比,添加了一种规定:在访问有序的LinkedHashMap中,影响LinkedHashMap迭代顺序的操作。比如get方法的调用就是一种结构性的更改.(因为访问有序的LinkedHashMap,在get访问一个元素后,,会对元素在链表中的位置产生影响,故结构会更改)
  • 3个特殊回调方法 
    • afterNodeRemoval,删除节点后,双向链表中unlink
    • afterNodeInsertion,插入节点后,是否删除eldest节点
    • afterNodeAccess,访问节点后,是否调整当前访问节点的顺序
    • 这3个方法保证了双向链表的有序性。在HashMap中方法体为空,此处是进行了覆写。
    • 调用了afterNodeRemoval的方法: 
      remove
    • 调用了afterNodeInsertion的方法: 
      put,computeIfAbsent,compute,merge
    • 调用了afterNodeAccess的方法: 
      put,computeIfAbsent,compute,merge,replace ,get,getOrDefault
    • 除去afterNodeAccess中的get,getOrDefault两个方法是在LHM中定义的,其它都是在HashMap中定义的。
  • 为了清晰理解LHM插入节点后的结构,给出一个例子 
    • hash函数为:h(key)=key%8
    • 依次插入元素:(k,v)对依次为:(1,11),(2,12),(3,13),(9,19),(17,27)
    • 给出结构图:(图中node节点未写出value,只写了key) 
      《Java 集合系列(17):LinkedHashMap源码分析》

2.code分析

        import java.io.IOException;
        import java.io.InvalidObjectException;
        import java.io.Serializable;
        import java.lang.*;
        import java.lang.reflect.ParameterizedType;
        import java.lang.reflect.Type;
        import java.util.*;
        import java.util.function.*;
        import java.util.function.BiFunction;
        import java.util.function.Consumer;

        /**
         * Created by caoxiaohong on 17/11/9 20:30.
         */


        /**
         * HashMap是实现了Map接口的哈希表.HashMap实现了map所有该有的操作.并且key和value都允许为null.
         * (HashMap和HashTable唯一不同的是:前者是非线程安全的,后者是线程安全的.因此除去线程安全这一点,我们可以粗略的认为HashMap
         * 和HashTable是等价的.)
         * HashMap存储的元素是没有顺序性的;特别是:不能保证现有的顺序随着时间的推移不会发生变化.
         *
         * 如果哈希函数能够把存储的元素均匀的分配到各个bucket里面,那么get和put操作的时间性能都是常数级别的.
         * 关于HashMap的迭代器,它的执行时间和两个因素有关,且成比例增长:
         * (1)当前HashMap实例有几个bucket.
         * (2)当前HashMap实例究竟存储了几个元素.
         * 所以,如果在一个应用中经常用到迭代器的话,那么将HashMap实例的capacity设置的太大(也就是负载因子过低),这是不合理的.因为这会严重影响其性能.
         *
         * 有两个参数会影响HashMap实例的性能:(1)初始化capacity的大小.(2)负载因子的大小.
         * capacity是指:哈希表拥有的bucket的数量.而初始化的capacity就是哈希表创建时的capacity.
         * 负载因子是指:它其实是HashMap实例的capacity自动增长的指标.
         * 当哈希表的条目超过了负载因子和capacity二者的乘积,哈希表会被rehash(也就是说,哈希表的内部数据结构会被重建),这样才能保证哈希表的bucket
         * 的个数大约增长为之前的2倍大小.
         *
         * 通用规则是:默认的负载因子大小为0.75.这个数字是在时间和空间的损耗上面做了一个平衡的值.较大的负载因子虽然会提升空间利用率,
         * 但是却提升了查找成本(查找成本在HashMap类中主要体现的操作就是get和put).当初始化一个HashMap的capacity的时候,条目的个数和负载因子
         * 这两个因素都应该被考虑进去,从而尽量减少rehash的次数.如果初始化的capacity比最多条目数除以负载因子的值还大,那么rehash的操作
         * 绝不会出现.
         *
         * 如果我们确定一定会在HashMap实例中存储很多的条目,那么在HashMap初始化时设置一个比较大的capacity要比设置一个小的capacity而让其
         * 后期自动增长的效率高得多.
         *
         * 注意:HashMap类是非线程安全的.
         * 如果多个线程同时操作一个HashMap实例,并且至少一个线程修改了HashMap实例的结构,要想实现线程安全,那么必须要有额外的措施来保证这一点.
         * (结构修改是指:为HashMap实例add或者delete一个或者多个映射;仅仅更改某个已经存在的key对应的value值,这并不是结构的改变.)
         * 这通常是通过同步一些map已经封装的对象,来实现线程同步的.
         *
         *  如果找不到map已经封装好的对象,那么就需要使用Collections.synchronizedMap的方法来包装map.
         *  这一包装操作最好在创建HashMap实例的时候就完成,以防止在操作map的时候发生一些偶然的非线程安全的问题.
         *  创建时的包装方式如下:
         *  Map m = Collections.synchronizedMap(new HashMap(...));
         *
         * 所有通过这个类的"集合视图方法"返回的迭代器:(如果通过迭代器遍历的过程中遇到问题,)都会尽可能早的抛出异常的.
         * 也就说:如果HashMap实例在创建完迭代器后,无论以何种方式,只要其结构发生了改变,迭代器都会抛出异常ConcurrentModificationException,
         * 当然唯一例外的情况就是:迭代器自己的remove方法,虽然会改变HashMap实例的结构,但是这并不会导致迭代器抛出异常.(为什么呢?通过
         * 后面的源码,我们自然可以理解到.因为迭代器自己的remove方法,始终删除的HashMap实例上一次刚刚访问的元素,而且更新了下一次访问的游标,所以
         * 这就保证了不用抛出异常.)
         *
         * 注意:迭代器的尽可能早的抛出异常的功能,并不是完全得到保障的.一般来讲,在出现了非线程安全的修改问题时,没有硬性保障一定会抛出异常.
         * 迭代器尽可能早的抛出异常是说:它只是会尽力做到这一点.
         * 因此,如果一个程序完全依赖于这一异常的正确性,这可能会出现问题:迭代器的这一功能只能用来去查找一些bug.
         *
         * @see     Object#hashCode()
         * @see     Collection
         * @see     Map
         * @see     TreeMap
         * @see     Hashtable
         * @since   1.2
         */

        /**
         * 类名分析:
         * (1)继承类:AbstractMap<K,V>
         * (2)实现接口:
         *  Map<K,V>:
         *  Cloneable:表示这个类可以调用Object的clone()方法,但是这个接口里面并没有提供任何方法,所以要想实现对象HashMap的浅拷贝,则需要在此类中
         *  手动写出clone()方法的拷贝过程.
         *  Serializable:表示HashMap可以序列化,反序列化.
         */

        public class HashMap<K,V> extends AbstractMap<K,V>
                implements Map<K,V>, Cloneable, Serializable {
            private static final long serialVersionUID = 362498820763181265L;
            /**
             * 变量定义了:HashMap初始化容量的大小为:16.
             * 变量定义的特征:
             * 1.static final类型;
             * 2.默认大小必须为2的整数次幂;
             */
            static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

            /**
             * 变量定义了:HashMap初始化最大的容量.这个变量什么时候起作用呢?就是在初始化HashMap时,如果传入构造器中的参数>(1<<30),则初始化
             * HashMap时,不能使用传入参数,而使用变量MAXIMUM_CAPACITY.
             * 变量定义特征:
             * 1.static final类型;
             * 2.1<<30==1073741824;
             *
             */
            static final int MAXIMUM_CAPACITY = 1 << 30;

            /**
             * HashMap初始化时的默认负载因子为:0.75;
             * 当然负载因子也可以在构造器参数中进行指定.
             * 变量定义特征:
             * 1.static final类型;
             * 2.(0,1)的取值范围;
             */
            static final float DEFAULT_LOAD_FACTOR = 0.75f;

            /**
             * 将链表转为红黑树的阈值
             * 当一个元素在被添加时,如果链表中node的个数已经达到了8个,链表将转为红黑树形式.
             * 这个值的设定必须大于2,且至少为8,显然源码中已经设定为8.原因是:
             */
            static final int TREEIFY_THRESHOLD = 8;

            /**
             * 将红黑树转为链表的阈值
             * 红黑树中node个数必须小于阈值.
             * 阈值最大为6,这里阈值设定为6
             */
            static final int UNTREEIFY_THRESHOLD = 6;

            /**
             * 桶被转为树的最小容量.
             * (桶的结构变化方式有两种:resize方式+转为树)
             * 为了避免桶的机构在选择变化方式时产生冲突,这一容量的设定值至少为32,那么可以看到在源码中已经设定这个值为64.
             */
            static final int MIN_TREEIFY_CAPACITY = 64;

            /**
             * Basic hash bin node, used for most entries.  (See below for
             * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
             * 基本哈希bin节点,用于大多数条目.
             *
             */
            static class Node<K,V> implements Map.Entry<K,V> {
                final int hash;
                final K key;
                V value;
                Node<K,V> next;

                Node(int hash, K key, V value, Node<K,V> next) {
                    this.hash = hash;
                    this.key = key;
                    this.value = value;
                    this.next = next;
                }

                public final K getKey()        { return key; }
                public final V getValue()      { return value; }
                public final String toString() { return key + "=" + value; }

                //条目的哈希值=key和value的哈希值求异或
                public final int hashCode() {
                    return Objects.hashCode(key) ^ Objects.hashCode(value);
                }

                public final V setValue(V newValue) {
                    V oldValue = value;
                    value = newValue;
                    return oldValue;
                }
                //equals方法还是正常的判定
                public final boolean equals(Object o) {
                    if (o == this)
                        return true;
                    if (o instanceof Map.Entry) {
                        Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                        if (Objects.equals(key, e.getKey()) &&
                                Objects.equals(value, e.getValue()))
                            return true;
                    }
                    return false;
                }
            }

            /* ---------------- Static utilities 静态工具类-------------- */

            /**
             *  计算key的哈希值h,再将h和(h无符号右移16位)进行异或.因为table使用了2的整数次幂的掩码,所以在当前
             *  掩码二进制位处的哈希值集合,总会发生碰撞.(在已知的例子中是Float键的集合,在小table中保持连续的整数)
             *  所以我们采取了h>>>>16的措施,使得这种影响从高位转移到低位.为什么选择右移16位,而不是18位等等,这其实是在速度,实用性,
             *  性能方面作出的一个权衡.因为很多哈希集合已经分配的很合理了(这样的哈希集合是不会从h>>>16位得到好处的),同时,因为
             *  我们使用红黑树来处理容器中大量集合的碰撞问题,为了降低系统损耗,我们采用了最廉价的方式,即对更改的二进制位进行了异或操作,
             *  同时消除了由于表边界而不会用于索引计算的最高位的影响.
             */
            static final int hash(Object key) {
                int h;
                return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
            }

            /**
             * 如果传入参数x实现了Comparable接口,则返回类x,否则返回null.
             */
            static Class<?> comparableClassFor(Object x) {
                if (x instanceof java.lang.Comparable) {
                    Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
                    //如果x是String类型,则返回String
                    if ((c = x.getClass()) == String.class) // bypass checks
                        return c;
                    //如果c实现的接口不为空
                    if ((ts = c.getGenericInterfaces()) != null) {
                        for (int i = 0; i < ts.length; ++i) { //对实现接口进行遍历
                            if (((t = ts[i]) instanceof ParameterizedType) &&
                                    ((p = (ParameterizedType)t).getRawType() ==
                                            java.lang.Comparable.class) &&
                                    (as = p.getActualTypeArguments()) != null &&
                                    as.length == 1 && as[0] == c) // type arg is c
                                return c;
                        }
                    }
                }
                return null;
            }

            /**
             * Returns k.compareTo(x) if x matches kc (k's screened comparable
             * class), else 0.
             * 如果x和kc类型相同,则返回k.compareTo(x)结果;否则返回0.
             */
            @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
            static int compareComparables(Class<?> kc, Object k, Object x) {
                return (x == null || x.getClass() != kc ? 0 :
                        ((java.lang.Comparable)k).compareTo(x));
            }

            /**
             * Returns a power of two size for the given target capacity.
             * 返回一个2倍capacity的整数次幂.
             * 这是一个static final类型的变量
             */
            static final int tableSizeFor(int cap) {
                int n = cap - 1;
                n |= n >>> 1;
                n |= n >>> 2;
                n |= n >>> 4;
                n |= n >>> 8;
                n |= n >>> 16;
                return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
            }

            /* ---------------- Fields 域-------------- */

            /**
             * table在第一次使用时,进行初始化,如果有必要会有resize的操作.
             * 当分配好大小后,table的大小总是2的整数次幂.
             * (我们还允许在某些操作中允许长度为零,以允许当前不需要的引导机制)
             *
             * transient类型变量,序列化时,table=null
             */
            transient Node<K,V>[] table;

            /**
             * 保存缓存的entrySet()。请注意,AbstractMap字段用于keySet()和values()
             * 序列化时,entrySet=null
             */
            transient Set<Map.Entry<K,V>> entrySet;

            /**
             * map中键值对的个数
             * 序列化时,size没有值
             */
            transient int size;

            /**
             * map结构的更改次数.结构更改是:键值对个数发生改变 or 其它改变map内部结构的操作,如resize时.
             * 这又是一个transient类型的域
             */
            transient int modCount;

            /**
             * 下一次resize的阈值大小:阈值=map容量*负载因子.(threshold=capacity*load factor)
             */
            int threshold;

            /**
             * 哈希表的负载因子
             * final类型字段,构造器给定后,不可更改
             * @serial
             */
            final float loadFactor;

            /* ---------------- Public operations -------------- */

            /**
             * public实例构造器,参数指定了:map初始化时的容量+负载因子
             */
            public HashMap(int initialCapacity, float loadFactor) {
                if (initialCapacity < 0)
                    throw new IllegalArgumentException("Illegal initial capacity: " +
                            initialCapacity);
                if (initialCapacity > MAXIMUM_CAPACITY)
                    initialCapacity = MAXIMUM_CAPACITY;
                if (loadFactor <= 0 || Float.isNaN(loadFactor))
                    throw new IllegalArgumentException("Illegal load factor: " +
                            loadFactor);
                this.loadFactor = loadFactor;
                this.threshold = tableSizeFor(initialCapacity);
            }

            /**
             * public实例构造器,参数指定:初始容量.
             * 通过调用上面的构造函数,负载因子为默认的0.75
             */
            public HashMap(int initialCapacity) {
                this(initialCapacity, DEFAULT_LOAD_FACTOR);
            }

            /**
             * public实例构造器,无参数.
             * 默认的初始化容量为16 && 负载因子为默认的0.75
             */
            public HashMap() {
                this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
            }

            /**
             * 创建一个新的HashMap,并用参数m来初始化其键值对.
             * 这个新的map负载因子为0.75,容量大小:以足够存放键值对为目标.
             */
            public HashMap(Map<? extends K, ? extends V> m) {
                this.loadFactor = DEFAULT_LOAD_FACTOR;
                putMapEntries(m, false);//调用的就是下面的方法
            }

            /**
             * 这一方法实现了Map.putAll和Map构造器的功能.
             * 当初始化map时,evict值为false,其它时候为true.
             * 这是一个final类型的方法
             */
            final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
                //传入map中键值对的个数
                int s = m.size();
                //如果m中有键值对
                if (s > 0) {
                    //如果table为null
                    if (table == null) { // pre-size
                        //初始化容量为ft=s/loadFactor+1.
                        float ft = ((float)s / loadFactor) + 1.0F;
                        //如果ft>MAXIMUM_CAPACITY,则令t=MAXIMUM_CAPACITY;否则令t=ft.
                        int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                                (int)ft : MAXIMUM_CAPACITY);
                        //如果t>阈值,更改阈值.将阈值更改为2t的整数次幂.
                        if (t > threshold)
                            threshold = tableSizeFor(t);
                    }
                    //如果m中键值对个数>阈值
                    else if (s > threshold)
                        resize();
                    for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                        K key = e.getKey();
                        V value = e.getValue();
                        putVal(hash(key), key, value, false, evict);
                    }
                }
            }

            //不解释
            public int size() {
                return size;
            }
            //不解释
            public boolean isEmpty() {
                return size == 0;
            }

            /**
             * 就是map的get(key)方法.
             * 返回结果2种情况:null 或者 某个具体值.
             * 唯一需要注意的是:返回结果为null并不是说map中没有对应key的映射,因为HashMap中key和value都允许为null.
             * 这可能key本来对应的value就是null.
             * 如果区分到底是不存在这样的映射?还是说key对应的value就是null?-->containsKey()方法可以解决这个问题.
             */
            public V get(Object key) {
                Node<K,V> e;
                //调用了getNode方法,参数为:key的哈希值和key
                return (e = getNode(hash(key), key)) == null ? null : e.value;
            }

            /**
             * 实现Map.get()及相关算法.
             * final类型方法.包级私有
             */
            final Node<K,V> getNode(int hash, Object key) {
                Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
                //赋值:tab=table  &  n=tab.length  &  first=tab[(n - 1) & hash]]
                //table不为空 & table长度>0 & table[(n - 1) & hash]]!=null
                if ((tab = table) != null && (n = tab.length) > 0 &&
                        (first = tab[(n - 1) & hash]) != null) {
                    //总是先检查first节点是否符合条件,这是从性能角度出发的,这一点要注意
                    if (first.hash == hash && // always check first node
                            ((k = first.key) == key || (key != null && key.equals(k))))
                        return first;
                    //e=first.next节点
                    //next节点不为空
                    if ((e = first.next) != null) {
                        //如果first节点为红黑树节点,则采用红黑树的查找方式去找key对应的value,并返回
                        if (first instanceof TreeNode)
                            return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                        //如果first节点为链表节点,则顺序查找key对应的value.
                        do {
                            if (e.hash == hash &&
                                    ((k = e.key) == key || (key != null && key.equals(k))))
                                return e;
                        } while ((e = e.next) != null);
                    }
                }
                return null;
            }

            /**
             * 如果map中包含对应的映射,则返回true;否则false.
             */
            public boolean containsKey(Object key) {
                return getNode(hash(key), key) != null;
            }

            /**
             * map的put操作,如果map中已经有了key,则key对应的原来的value会被替换掉.
             * 调用了下面的final类型方法.
             */
            public V put(K key, V value) {
                return putVal(hash(key), key, value, false, true);
            }

            /**
             * 实现了map.put()及其相关的方法.
             * @param onlyIfAbsent 为true时,则不覆盖key对应的value值,但是put在调用这个方法时,赋值false,说明覆盖原始value.
             * @param evict 为false时,table处于创建模式.
             */
            final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                           boolean evict) {
                Node<K,V>[] tab; Node<K,V> p; int n, i;
                /**如果table为null,或者table.length==0,通过调用resize()方法为table初始化大小.
                 * tab=table或者tab = resize();
                 * n=tab.length 或者 n=(tab = resize()).length
                 */
                if ((tab = table) == null || (n = tab.length) == 0)
                    n = (tab = resize()).length;
                /**如果first节点为null,则为tab[first=i]赋值.
                 * p=tab[i = (n - 1) & hash]
                 */
                if ((p = tab[i = (n - 1) & hash]) == null)
                    tab[i] = newNode(hash, key, value, null);
                else {
                    Node<K,V> e; K k;
                    //如果p节点和插入节点的hash和key相同,则e=p.
                    if (p.hash == hash &&
                            ((k = p.key) == key || (key != null && key.equals(k))))
                        e = p;
                    //如果p是红黑树节点,调用红黑树节点插入法.
                    else if (p instanceof TreeNode)
                        e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
                    //如果p为链表节点
                    else {
                        for (int binCount = 0; ; ++binCount) {
                            //链表结尾处插入节点
                            if ((e = p.next) == null) {
                                p.next = newNode(hash, key, value, null);
                                //如果链表节点个数到达在插入新的节点后,达到转为红黑树的阈值,则还需要将此链表转为红黑树.
                                if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                                    treeifyBin(tab, hash);
                                break;
                            }
                            //如果插入节点和原链表中的某个key具有相同的hash且key相同,停止查找.
                            if (e.hash == hash &&
                                    ((k = e.key) == key || (key != null && key.equals(k))))
                                break;
                            p = e;
                        }
                    }
                    if (e != null) { // existing mapping for key
                        V oldValue = e.value;
                        //替换原value值
                        if (!onlyIfAbsent || oldValue == null)
                            e.value = value;
                        afterNodeAccess(e);
                        return oldValue;
                    }
                }
                //map结构更改次数+1
                ++modCount;
                //键值对个数>阈值,更新table容量为原来2倍.这说明,HashMap扩容为原来2倍.
                if (++size > threshold)
                    resize();
                afterNodeInsertion(evict);
                return null;
            }

            /**
             * 初始化table的大小或者将table的大小增大为两倍.
             * 如果table==null,将table的大小设置为指定阈值threshold大小;
             * 否则,因为我们使用的增长策略是2的整数次幂方式,table的容量在更改时,同一元素在table中的索引要么不变,要么移动到相对原位置
             * 而言,距离2的整数次幂的一个位置.
             * 最终返回table.
             */
            final Node<K,V>[] resize() {
                Node<K,V>[] oldTab = table;
                int oldCap = (oldTab == null) ? 0 : oldTab.length;
                int oldThr = threshold;
                int newCap, newThr = 0;
                //如果原map容量>0
                if (oldCap > 0) {
                    //如果原容量>=最大容量,更改阈值为Integer最大值,并返回原table,程序停止执行.
                    if (oldCap >= MAXIMUM_CAPACITY) {
                        threshold = Integer.MAX_VALUE;
                        return oldTab;
                    }
                    //为新阈值赋值:oldThr << 1
                    else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                            oldCap >= DEFAULT_INITIAL_CAPACITY)
                        newThr = oldThr << 1; // double threshold
                }
                //如果原阈值>0
                else if (oldThr > 0) // initial capacity was placed in threshold
                //新阈值=原阈值
                    newCap = oldThr;
                else {               // zero initial threshold signifies using defaults
                    newCap = DEFAULT_INITIAL_CAPACITY;
                    newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
                }
                //如果新阈值==0
                if (newThr == 0) {
                    //ft为新阈值
                    float ft = (float)newCap * loadFactor;
                    //新阈值赋值
                    newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                            (int)ft : Integer.MAX_VALUE);
                }
                //table阈值赋值
                threshold = newThr;
                @SuppressWarnings({"rawtypes","unchecked"})
                Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
                //table赋值
                table = newTab;
                //如果原table不为null
                if (oldTab != null) {
                    //遍历旧table各个bucket
                    for (int j = 0; j < oldCap; ++j) {
                        Node<K,V> e;
                        //如果原table[j]!=null
                        if ((e = oldTab[j]) != null) {
                            //将原table[j]处置为null,释放空间.
                            oldTab[j] = null;
                            //如果e无后继节点
                            if (e.next == null)
                                //将e值付给新table的e对应的first节点
                                newTab[e.hash & (newCap - 1)] = e;
                            //e如果为红黑树类型节点
                            else if (e instanceof TreeNode)
                                //重构红黑树结构,到新table中
                                ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                            //e如果为链表节点
                            else { // preserve order
                                Node<K,V> loHead = null, loTail = null;
                                Node<K,V> hiHead = null, hiTail = null;
                                Node<K,V> next;
                                do {
                                    next = e.next;
                                    if ((e.hash & oldCap) == 0) {
                                        if (loTail == null)
                                            loHead = e;
                                        else
                                            loTail.next = e;
                                        loTail = e;
                                    }
                                    else {
                                        if (hiTail == null)
                                            hiHead = e;
                                        else
                                            hiTail.next = e;
                                        hiTail = e;
                                    }
                                } while ((e = next) != null);
                                if (loTail != null) {
                                    loTail.next = null;
                                    newTab[j] = loHead;
                                }
                                if (hiTail != null) {
                                    hiTail.next = null;
                                    newTab[j + oldCap] = hiHead;
                                }
                            }
                        }
                    }
                }
                return newTab;
            }

            /**
             * 将桶数组table转为红黑树.
             */
            final void treeifyBin(Node<K,V>[] tab, int hash) {
                int n, index; Node<K,V> e;
                //如果table为空或者桶数组table太小,不符合转为红黑树的条件.
                if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
                    //桶数组table扩容
                    resize();
                //如果符合转为红黑树的条件,且hash对应的桶不为null
                else if ((e = tab[index = (n - 1) & hash]) != null) {
                    TreeNode<K,V> hd = null, tl = null;
                    //遍历链表
                    do {
                        TreeNode<K,V> p = replacementTreeNode(e, null);
                        if (tl == null)
                            hd = p;
                        else {
                            p.prev = tl;
                            tl.next = p;
                        }
                        tl = p;
                    } while ((e = e.next) != null);
                    if ((tab[index] = hd) != null)
                        hd.treeify(tab);
                }
            }


            //将指定m中的键值对映射到调用putAll方法的map中.如果key有重复,则value值被覆盖.
            public void putAll(Map<? extends K, ? extends V> m) {
                putMapEntries(m, true);
            }

            //删除指定key的条目
            public V remove(Object key) {
                Node<K,V> e;
                /**
                 * null:显然传入的value=null,说明需要忽略value,所以matchValue必定为false.
                 * true:删除当前节点时,会移动其它节点.
                 */
                return (e = removeNode(hash(key), key, null, false, true)) == null ?
                        null : e.value;
            }

            /**
             * Map.remove方法及其相关方法的实现
             * @param matchValue 如果为true,则删除一个node的条件是:key和value都一致,才删除.
             * @param movable 如果为false,则删除当前节点时,不会移动其它节点.
             */
            final Node<K,V> removeNode(int hash, Object key, Object value,
                                       boolean matchValue, boolean movable) {
                Node<K,V>[] tab; Node<K,V> p; int n, index;
                /**如果table不为null 且 table.leng>0 且 table[first]!=null
                 * 赋值:tab=table  &  n=tab.length  &  p=tab[first] & index=first
                 * first=(n-1) & hash :这个索引到底是什么?其实就是key在table的下标.所以如果如果tab[index]=null,说明
                 * 这个索引值处没有存储元素,也就是table中未存储这个索引值的任何node,故不需要再往下查找啦,直接返回null.
                 */
                if ((tab = table) != null && (n = tab.length) > 0 &&
                        (p = tab[index = (n - 1) & hash]) != null) {
                    Node<K,V> node = null, e; K k; V v;
                    /**
                     * 这里的写法和插入node写法一致.首先检查bucket中第一个node是否符合条件,也就是检查p是否符合条件;
                     * 如果p(=tab[index])的hash和key都一致,则node=p;
                     */
                    if (p.hash == hash &&
                            ((k = p.key) == key || (key != null && key.equals(k))))
                        node = p;
                    //如果p后面有节点,即hash值相同的节点个数>1
                    else if ((e = p.next) != null) {
                        //如果p节点类型为红黑树节点,则调用红黑树节点的查找方法.
                        if (p instanceof TreeNode)
                            node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                        //如果p节点为链表节点,则顺序查找链表节点
                        else {
                            do {
                                if (e.hash == hash &&
                                        ((k = e.key) == key ||
                                                (key != null && key.equals(k)))) {
                                    node = e;
                                    break;
                                }
                                p = e;
                            } while ((e = e.next) != null);
                        }
                    }
                    /**如果找到指定hash的node,且保证删除策略matchValue,则可以删除.
                     * 1.matchValue=true,需要根据value是否一致来确定是否删除;
                     * 2.matchValue=false,则删除.
                     */
                    if (node != null && (!matchValue || (v = node.value) == value ||
                            (value != null && value.equals(v)))) {
                        //node类型为红黑树节点,调用红黑树节点删除方法.
                        if (node instanceof TreeNode)
                            ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                        /**p:需要被删除节点node的前驱
                         * 如果p节点和node节点是同一个,更改bucket中的值/
                         * buckt=tab[index]=node--->node.next
                         */
                        else if (node == p)
                            tab[index] = node.next;
                        //直接更改链接指针,则删除node节点.
                        else
                            p.next = node.next;
                        //结构更改次数+1
                        ++modCount;
                        //键值对个数-1
                        --size;
                        //回调函数
                        afterNodeRemoval(node);
                        //返回删除节点
                        return node;
                    }
                }
                return null;
            }

            /**
             * 删除map中所有的键值对.此方法调用后,map实例将为null,因为方法中对tab[i]=null的赋值
             */
            public void clear() {
                Node<K,V>[] tab;
                modCount++;
                if ((tab = table) != null && size > 0) {
                    size = 0;
                    //注意:tab[i]=null,则告诉jvm可以对table的内存进行回收,同时table也不再拥有其内存空间.
                    for (int i = 0; i < tab.length; ++i)
                        tab[i] = null;
                }
            }

            /**
             * 这个方法没啥好说的
             */
            public boolean containsValue(Object value) {
                Node<K,V>[] tab; V v;
                if ((tab = table) != null && size > 0) {
                    for (int i = 0; i < tab.length; ++i) {
                        for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                            if ((v = e.value) == value ||
                                    (value != null && value.equals(v)))
                                return true;
                        }
                    }
                }
                return false;
            }

            /**
             * 返回map中key的集合视图.
             * 这一集合由map做后台支撑,因此map中key的更改会影响key的Set集合,反之亦然.
             * 如果在key的集合迭代过程中,map中key被更改了,会产生什么结果并未定义.
             * 这一set支持删除元素,通过Iterator.remove(), Set.remove(),
             * removeAll(), retainAll(), clear()方法,会从map中删除整个条目.
             * 这一set不支持add()和addAll()方法.
             */
            public Set<K> keySet() {
                Set<K> ks = keySet;
                if (ks == null) {
                    ks = new KeySet();
                    keySet = ks;
                }
                return ks;
            }

            /**继承于set骨架实现的内部final类
             */
            final class KeySet extends AbstractSet<K> {
                public final int size()                 { return size; }
                public final void clear()               { HashMap.this.clear(); }
                public final Iterator<K> iterator()     { return new KeyIterator(); }
                public final boolean contains(Object o) { return containsKey(o); }
                public final boolean remove(Object key) {
                    return removeNode(hash(key), key, null, false, true) != null;
                }
                public final Spliterator<K> spliterator() {
                    return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
                }
                public final void forEach(java.util.function.Consumer<? super K> action) {
                    Node<K,V>[] tab;
                    if (action == null)
                        throw new NullPointerException();
                    if (size > 0 && (tab = table) != null) {
                        int mc = modCount;
                        for (int i = 0; i < tab.length; ++i) {
                            for (Node<K,V> e = tab[i]; e != null; e = e.next)
                                action.accept(e.key);
                        }
                        if (modCount != mc)
                            throw new ConcurrentModificationException();
                    }
                }
            }

            /**
             * 获取map中values的一个Collection视图.
             * 这个collection是以map作为后台支撑的,所以map中value的更改会影响这个collection,反之亦然.
             * 当迭代这个collection时,如果map发生了改变,迭代结果会受到什么影响并未定义.
             * 这个collection支持元素的删除,通过Iterator.remove(),
             * Collection.remove(), removeAll(),
             * retainAll(),clear()方法,均可进行删除,此时删除的是一个条目.
             * 这个collection不支持元素的添加,即为不支持add()和addAll()方法.
             */
            public Collection<V> values() {
                Collection<V> vs = values;
                if (vs == null) {
                    vs = new Values();
                    values = vs;
                }
                return vs;
            }
            //继续collection骨架实现的内部final类
            final class Values extends AbstractCollection<V> {
                public final int size()                 { return size; }
                public final void clear()               { HashMap.this.clear(); }
                public final Iterator<V> iterator()     { return new ValueIterator(); }
                public final boolean contains(Object o) { return containsValue(o); }
                public final Spliterator<V> spliterator() {
                    return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
                }
                public final void forEach(java.util.function.Consumer<? super V> action) {
                    Node<K,V>[] tab;
                    if (action == null)
                        throw new NullPointerException();
                    if (size > 0 && (tab = table) != null) {
                        int mc = modCount;
                        for (int i = 0; i < tab.length; ++i) {
                            for (Node<K,V> e = tab[i]; e != null; e = e.next)
                                action.accept(e.value);
                        }
                        if (modCount != mc)
                            throw new ConcurrentModificationException();
                    }
                }
            }

            /**
             * 返回map中条目的一个set.
             * 这个set后台由map支撑,故在结构上,二者互相影响.
             * 支持删除操作,不支持添加操作.
             */
            public Set<Map.Entry<K,V>> entrySet() {
                Set<Map.Entry<K,V>> es;
                return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
            }
            //继承set骨架实现的内部final类
            final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
                public final int size()                 { return size; }
                public final void clear()               { HashMap.this.clear(); }
                public final Iterator<Map.Entry<K,V>> iterator() {
                    return new EntryIterator();
                }
                public final boolean contains(Object o) {
                    if (!(o instanceof Map.Entry))
                        return false;
                    Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                    Object key = e.getKey();
                    Node<K,V> candidate = getNode(hash(key), key);
                    return candidate != null && candidate.equals(e);
                }
                public final boolean remove(Object o) {
                    if (o instanceof Map.Entry) {
                        Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                        Object key = e.getKey();
                        Object value = e.getValue();
                        return removeNode(hash(key), key, value, true, true) != null;
                    }
                    return false;
                }
                public final Spliterator<Map.Entry<K,V>> spliterator() {
                    return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
                }
                public final void forEach(java.util.function.Consumer<? super Entry<K,V>> action) {
                    Node<K,V>[] tab;
                    if (action == null)
                        throw new NullPointerException();
                    if (size > 0 && (tab = table) != null) {
                        int mc = modCount;
                        for (int i = 0; i < tab.length; ++i) {
                            for (Node<K,V> e = tab[i]; e != null; e = e.next)
                                action.accept(e);
                        }
                        if (modCount != mc)
                            throw new ConcurrentModificationException();
                    }
                }
            }

            // Overrides of JDK8 Map extension methods

            /**
             * 以下为:jdk8中map的扩展方法
             */
            @Override
            public V getOrDefault(Object key, V defaultValue) {
                Node<K,V> e;
                return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
            }

            @Override
            public V putIfAbsent(K key, V value) {
                return putVal(hash(key), key, value, true, true);
            }

            @Override
            public boolean remove(Object key, Object value) {
                return removeNode(hash(key), key, value, true, true) != null;
            }

            @Override
            public boolean replace(K key, V oldValue, V newValue) {
                Node<K,V> e; V v;
                if ((e = getNode(hash(key), key)) != null &&
                        ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
                    e.value = newValue;
                    afterNodeAccess(e);
                    return true;
                }
                return false;
            }

            @Override
            public V replace(K key, V value) {
                Node<K,V> e;
                if ((e = getNode(hash(key), key)) != null) {
                    V oldValue = e.value;
                    e.value = value;
                    afterNodeAccess(e);
                    return oldValue;
                }
                return null;
            }

            @Override
            public V computeIfAbsent(K key,
                                     java.util.function.Function<? super K, ? extends V> mappingFunction) {
                if (mappingFunction == null)
                    throw new NullPointerException();
                int hash = hash(key);
                Node<K,V>[] tab; Node<K,V> first; int n, i;
                int binCount = 0;
                TreeNode<K,V> t = null;
                Node<K,V> old = null;
                if (size > threshold || (tab = table) == null ||
                        (n = tab.length) == 0)
                    n = (tab = resize()).length;
                if ((first = tab[i = (n - 1) & hash]) != null) {
                    if (first instanceof TreeNode)
                        old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
                    else {
                        Node<K,V> e = first; K k;
                        do {
                            if (e.hash == hash &&
                                    ((k = e.key) == key || (key != null && key.equals(k)))) {
                                old = e;
                                break;
                            }
                            ++binCount;
                        } while ((e = e.next) != null);
                    }
                    V oldValue;
                    if (old != null && (oldValue = old.value) != null) {
                        afterNodeAccess(old);
                        return oldValue;
                    }
                }
                V v = mappingFunction.apply(key);
                if (v == null) {
                    return null;
                } else if (old != null) {
                    old.value = v;
                    afterNodeAccess(old);
                    return v;
                }
                else if (t != null)
                    t.putTreeVal(this, tab, hash, key, v);
                else {
                    tab[i] = newNode(hash, key, v, first);
                    if (binCount >= TREEIFY_THRESHOLD - 1)
                        treeifyBin(tab, hash);
                }
                ++modCount;
                ++size;
                afterNodeInsertion(true);
                return v;
            }

            public V computeIfPresent(K key,
                                      java.util.function.BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
                if (remappingFunction == null)
                    throw new NullPointerException();
                Node<K,V> e; V oldValue;
                int hash = hash(key);
                if ((e = getNode(hash, key)) != null &&
                        (oldValue = e.value) != null) {
                    V v = remappingFunction.apply(key, oldValue);
                    if (v != null) {
                        e.value = v;
                        afterNodeAccess(e);
                        return v;
                    }
                    else
                        removeNode(hash, key, null, false, true);
                }
                return null;
            }

            @Override
            public V compute(K key,
                             java.util.function.BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
                if (remappingFunction == null)
                    throw new NullPointerException();
                int hash = hash(key);
                Node<K,V>[] tab; Node<K,V> first; int n, i;
                int binCount = 0;
                TreeNode<K,V> t = null;
                Node<K,V> old = null;
                if (size > threshold || (tab = table) == null ||
                        (n = tab.length) == 0)
                    n = (tab = resize()).length;
                if ((first = tab[i = (n - 1) & hash]) != null) {
                    if (first instanceof TreeNode)
                        old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
                    else {
                        Node<K,V> e = first; K k;
                        do {
                            if (e.hash == hash &&
                                    ((k = e.key) == key || (key != null && key.equals(k)))) {
                                old = e;
                                break;
                            }
                            ++binCount;
                        } while ((e = e.next) != null);
                    }
                }
                V oldValue = (old == null) ? null : old.value;
                V v = remappingFunction.apply(key, oldValue);
                if (old != null) {
                    if (v != null) {
                        old.value = v;
                        afterNodeAccess(old);
                    }
                    else
                        removeNode(hash, key, null, false, true);
                }
                else if (v != null) {
                    if (t != null)
                        t.putTreeVal(this, tab, hash, key, v);
                    else {
                        tab[i] = newNode(hash, key, v, first);
                        if (binCount >= TREEIFY_THRESHOLD - 1)
                            treeifyBin(tab, hash);
                    }
                    ++modCount;
                    ++size;
                    afterNodeInsertion(true);
                }
                return v;
            }

            @Override
            public V merge(K key, V value,
                           java.util.function.BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
                if (value == null)
                    throw new NullPointerException();
                if (remappingFunction == null)
                    throw new NullPointerException();
                int hash = hash(key);
                Node<K,V>[] tab; Node<K,V> first; int n, i;
                int binCount = 0;
                TreeNode<K,V> t = null;
                Node<K,V> old = null;
                if (size > threshold || (tab = table) == null ||
                        (n = tab.length) == 0)
                    n = (tab = resize()).length;
                if ((first = tab[i = (n - 1) & hash]) != null) {
                    if (first instanceof TreeNode)
                        old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
                    else {
                        Node<K,V> e = first; K k;
                        do {
                            if (e.hash == hash &&
                                    ((k = e.key) == key || (key != null && key.equals(k)))) {
                                old = e;
                                break;
                            }
                            ++binCount;
                        } while ((e = e.next) != null);
                    }
                }
                if (old != null) {
                    V v;
                    if (old.value != null)
                        v = remappingFunction.apply(old.value, value);
                    else
                        v = value;
                    if (v != null) {
                        old.value = v;
                        afterNodeAccess(old);
                    }
                    else
                        removeNode(hash, key, null, false, true);
                    return v;
                }
                if (value != null) {
                    if (t != null)
                        t.putTreeVal(this, tab, hash, key, value);
                    else {
                        tab[i] = newNode(hash, key, value, first);
                        if (binCount >= TREEIFY_THRESHOLD - 1)
                            treeifyBin(tab, hash);
                    }
                    ++modCount;
                    ++size;
                    afterNodeInsertion(true);
                }
                return value;
            }

            @Override
            public void forEach(BiConsumer<? super K, ? super V> action) {
                Node<K,V>[] tab;
                if (action == null)
                    throw new NullPointerException();
                if (size > 0 && (tab = table) != null) {
                    int mc = modCount;
                    for (int i = 0; i < tab.length; ++i) {
                        for (Node<K,V> e = tab[i]; e != null; e = e.next)
                            action.accept(e.key, e.value);
                    }
                    if (modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }

            @Override
            public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
                Node<K,V>[] tab;
                if (function == null)
                    throw new NullPointerException();
                if (size > 0 && (tab = table) != null) {
                    int mc = modCount;
                    for (int i = 0; i < tab.length; ++i) {
                        for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                            e.value = function.apply(e.key, e.value);
                        }
                    }
                    if (modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }

            /* ------------------------------------------------------------ */
            // clone和序列化实现
            /**
             * 返回map实例的浅拷贝:key和value本身不会被clone,因为key和value均为对象.
             */
            @SuppressWarnings("unchecked")
            @Override
            public Object clone() {
                HashMap<K,V> result;
                try {
                    result = (HashMap<K,V>)super.clone();
                } catch (CloneNotSupportedException e) {
                    // this shouldn't happen, since we are Cloneable
                    throw new InternalError(e);
                }
                //将result实例的一些域进行赋值,要么为null,要么为0.因为result和原map共享table,所以所有域的值都不再有任何意义.
                result.reinitialize();
                //使用map初始化result
                result.putMapEntries(this, false);
                return result;
            }

            //这些方法在序列化HasSet时,同样适用.
            final float loadFactor() { return loadFactor; }
            //如果table不为null,返回容量为table的长度;
            //如果table为null,如果阈值>0,返回容量为阈值;如果阈值<=0,返回默认初始化容量.
            final int capacity() {
                return (table != null) ? table.length :
                        (threshold > 0) ? threshold :
                                DEFAULT_INITIAL_CAPACITY;
            }

            /**
             * 保存当前HashMap实例到流中(如序列化时)
             * 序列化数据格式:
             * 1.HashMap的容量(=桶数组的长度).
             * 2.size(键值对个数)
             * 3.键值对(顺序不确定)
             */
            private void writeObject(java.io.ObjectOutputStream s)
                    throws IOException {
                int buckets = capacity();
                // Write out the threshold, loadfactor, and any hidden stuff
                //写入:阈值,负载因子,其它隐藏信息
                s.defaultWriteObject();
                //写入:bucket个数(容量)
                s.writeInt(buckets);
                //写入size
                s.writeInt(size);
                //写入:键值对
                internalWriteEntries(s);
            }

            /**
             * 从流重建HashMap(如反序列化时)
             */
            private void readObject(java.io.ObjectInputStream s)
                    throws IOException, ClassNotFoundException {
                //读取:阈值(忽略),负载因子,其它隐藏信息
                s.defaultReadObject();
                //初始化map,对HashMap的一些域初始化.
                reinitialize();
                //如果负载因子<=0 or 为非数字值,则抛出异常.
                if (loadFactor <= 0 || Float.isNaN(loadFactor))
                    throw new InvalidObjectException("Illegal load factor: " +
                            loadFactor);
                /**
                 *读取buckets值,且忽略.
                 * 忽略是什么意思?
                 * 因为stream的读取必须是一个个二进制位的读取,所以读入顺序同序列化顺序一致.比如,必须先读取bucket才能读取size.
                 * 所以虽然读取了bucket的值,但是只是为了整个流的读取,不会对这个值进行处理.
                 */
                s.readInt();
                //读取size,并保存
                int mappings = s.readInt();
                //如果键值对个数<0,则抛出异常.
                if (mappings < 0)
                    throw new InvalidObjectException("Illegal mappings count: " +
                            mappings);
                //如果键值对个数>0
                else if (mappings > 0) { // (if zero, use defaults)
                    // Size the table using given load factor only if within
                    // range of 0.25...4.0
                    //负载因子
                    float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
                    //容量(必然大于键值对个数)
                    float fc = (float)mappings / lf + 1.0f;
                    //根据fc进一步确定容量cap
                    int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
                            DEFAULT_INITIAL_CAPACITY :
                            (fc >= MAXIMUM_CAPACITY) ?
                                    MAXIMUM_CAPACITY :
                                    tableSizeFor((int)fc));
                    //阈值=容量*负载因子
                    float ft = (float)cap * lf;
                    //根据ft确定阈值
                    threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
                            (int)ft : Integer.MAX_VALUE);
                    //为table申请内存空间个数:cap
                    @SuppressWarnings({"rawtypes","unchecked"})
                    Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
                    table = tab;

                    //table建好后,将键值对拷贝到table中.
                    for (int i = 0; i < mappings; i++) {
                        @SuppressWarnings("unchecked")
                        K key = (K) s.readObject();
                        @SuppressWarnings("unchecked")
                        V value = (V) s.readObject();
                        putVal(hash(key), key, value, false, false);
                    }
                }
            }

            /* ------------------------------------------------------------ */
            // hash迭代器
            //抽象类
            abstract class HashIterator {
                Node<K,V> next;        // next entry to return
                Node<K,V> current;     // current entry
                int expectedModCount;  // for fast-fail
                int index;             // current slot

                HashIterator() {
                    expectedModCount = modCount;//保证了在map结构发生改变时,迭代器失效
                    Node<K,V>[] t = table;
                    current = next = null;
                    index = 0;
                    //找到迭代的第一个入口
                    if (t != null && size > 0) { // advance to first entry
                        do {} while (index < t.length && (next = t[index++]) == null);
                    }
                }

                public final boolean hasNext() {
                    return next != null;
                }

                final Node<K,V> nextNode() {
                    Node<K,V>[] t;
                    Node<K,V> e = next;
                    //map结构改变,抛出异常
                    if (modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    //节点为null,抛出异常
                    if (e == null)
                        throw new NoSuchElementException();
                    //如果当前节点e为最后一个节点,则再次为index赋值,找到迭代器的入口.注意此时next=null
                    if ((next = (current = e).next) == null && (t = table) != null) {
                        do {} while (index < t.length && (next = t[index++]) == null);
                    }
                    //返回节点
                    return e;
                }

                public final void remove() {
                    Node<K,V> p = current;
                    //节点为null,抛出异常
                    if (p == null)
                        throw new IllegalStateException();
                    //map结构改变,抛出异常
                    if (modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    //释放当前节点内存,通知jvm可以对其进行回收
                    current = null;
                    K key = p.key;
                    //删除节点
                    removeNode(hash(key), key, null, false, false);
                    //更新map结构更改次数.
                    expectedModCount = modCount;
                }
            }

            //key迭代器,继承hash迭代器
            final class KeyIterator extends HashIterator
                    implements Iterator<K> {
                public final K next() { return nextNode().key; }
            }

            //value迭代器,继承hash迭代器
            final class ValueIterator extends HashIterator
                    implements Iterator<V> {
                public final V next() { return nextNode().value; }
            }

            //entry迭代器,继承hash迭代器
            final class EntryIterator extends HashIterator
                    implements Iterator<Map.Entry<K,V>> {
                public final Map.Entry<K,V> next() { return nextNode(); }
            }

            /* ------------------------------------------------------------ */
            // spliterators分隔迭代器

            static class HashMapSpliterator<K,V> {
                final HashMap<K,V> map;
                Node<K,V> current;          // 当前节点
                int index;                  // current index, modified on advance/split当前索引,在节点向前或者被分割时,值改变
                int fence;                  // table最后一个索引值+1
                int est;                    // 预估size大小
                int expectedModCount;       // 用于检查map结构是否更改的标准域

                HashMapSpliterator(HashMap<K,V> m, int origin,
                                   int fence, int est,
                                   int expectedModCount) {
                    this.map = m;
                    this.index = origin;
                    this.fence = fence;
                    this.est = est;
                    this.expectedModCount = expectedModCount;
                }

                //第一次使用时,初始化fence和size的值
                final int getFence() { // initialize fence and size on first use
                    int hi;
                    if ((hi = fence) < 0) {
                        HashMap<K,V> m = map;
                        est = m.size;
                        expectedModCount = m.modCount;
                        Node<K,V>[] tab = m.table;
                        //table=null,则fence=0;否则为table的length
                        hi = fence = (tab == null) ? 0 : tab.length;
                    }
                    return hi;
                }
                //获取size大小
                public final long estimateSize() {
                    getFence(); // force init
                    return (long) est;
                }
            }

            //static final类
            //key分隔迭代器,继承hash分隔迭代器
            static final class KeySpliterator<K,V>
                    extends HashMapSpliterator<K,V>
                    implements Spliterator<K> {
                KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
                               int expectedModCount) {
                    super(m, origin, fence, est, expectedModCount);
                }

                //
                public KeySpliterator<K,V> trySplit() {
                    int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                    return (lo >= mid || current != null) ? null :
                            new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
                                    expectedModCount);
                }
                //对每一个key执行action接口定义的操作
                public void forEachRemaining(java.util.function.Consumer<? super K> action) {
                    int i, hi, mc;
                    if (action == null)
                        throw new NullPointerException();
                    HashMap<K,V> m = map;
                    Node<K,V>[] tab = m.table;
                    if ((hi = fence) < 0) {
                        mc = expectedModCount = m.modCount;
                        hi = fence = (tab == null) ? 0 : tab.length;
                    }
                    else
                        mc = expectedModCount;
                    if (tab != null && tab.length >= hi &&
                            (i = index) >= 0 && (i < (index = hi) || current != null)) {
                        Node<K,V> p = current;
                        current = null;
                        do {
                            if (p == null)
                                p = tab[i++];
                            else {
                                //当前节点执行accept操作,就是你定义consumer接口中的操作.
                                action.accept(p.key);
                                p = p.next;
                            }
                        } while (p != null || i < hi);
                        //map结构改变,抛出异常.
                        if (m.modCount != mc)
                            throw new ConcurrentModificationException();
                    }
                }

                //查找table中第一个非空的bucket,如果有,则对其执行action中的操作,并返回true;否则返回false;
                public boolean tryAdvance(java.util.function.Consumer<? super K> action) {
                    int hi;
                    if (action == null)
                        throw new NullPointerException();
                    Node<K,V>[] tab = map.table;
                    //hi=table.length
                    if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                        while (current != null || index < hi) {
                            if (current == null)
                                current = tab[index++];
                            else {
                                K k = current.key;
                                current = current.next;
                                action.accept(k);
                                if (map.modCount != expectedModCount)
                                    throw new ConcurrentModificationException();
                                return true;
                            }
                        }
                    }
                    return false;
                }
                //?
                public int characteristics() {
                    return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                            Spliterator.DISTINCT;
                }
            }
            //value分隔迭代器,继承自hashmap分隔迭代器,各个方法和key分隔迭代器一样,不解释
            static final class ValueSpliterator<K,V>
                    extends HashMapSpliterator<K,V>
                    implements Spliterator<V> {
                ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
                                 int expectedModCount) {
                    super(m, origin, fence, est, expectedModCount);
                }

                public ValueSpliterator<K,V> trySplit() {
                    int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                    return (lo >= mid || current != null) ? null :
                            new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
                                    expectedModCount);
                }

                public void forEachRemaining(java.util.function.Consumer<? super V> action) {
                    int i, hi, mc;
                    if (action == null)
                        throw new NullPointerException();
                    HashMap<K,V> m = map;
                    Node<K,V>[] tab = m.table;
                    if ((hi = fence) < 0) {
                        mc = expectedModCount = m.modCount;
                        hi = fence = (tab == null) ? 0 : tab.length;
                    }
                    else
                        mc = expectedModCount;
                    if (tab != null && tab.length >= hi &&
                            (i = index) >= 0 && (i < (index = hi) || current != null)) {
                        Node<K,V> p = current;
                        current = null;
                        do {
                            if (p == null)
                                p = tab[i++];
                            else {
                                action.accept(p.value);
                                p = p.next;
                            }
                        } while (p != null || i < hi);
                        if (m.modCount != mc)
                            throw new ConcurrentModificationException();
                    }
                }

                public boolean tryAdvance(java.util.function.Consumer<? super V> action) {
                    int hi;
                    if (action == null)
                        throw new NullPointerException();
                    Node<K,V>[] tab = map.table;
                    if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                        while (current != null || index < hi) {
                            if (current == null)
                                current = tab[index++];
                            else {
                                V v = current.value;
                                current = current.next;
                                action.accept(v);
                                if (map.modCount != expectedModCount)
                                    throw new ConcurrentModificationException();
                                return true;
                            }
                        }
                    }
                    return false;
                }

                public int characteristics() {
                    return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
                }
            }
            //entry分隔迭代器,功能和key分隔迭代器,不解释
            static final class EntrySpliterator<K,V>
                    extends HashMapSpliterator<K,V>
                    implements Spliterator<Map.Entry<K,V>> {
                EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
                                 int expectedModCount) {
                    super(m, origin, fence, est, expectedModCount);
                }

                public EntrySpliterator<K,V> trySplit() {
                    int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                    return (lo >= mid || current != null) ? null :
                            new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
                                    expectedModCount);
                }

                public void forEachRemaining(java.util.function.Consumer<? super Entry<K,V>> action) {
                    int i, hi, mc;
                    if (action == null)
                        throw new NullPointerException();
                    HashMap<K,V> m = map;
                    Node<K,V>[] tab = m.table;
                    if ((hi = fence) < 0) {
                        mc = expectedModCount = m.modCount;
                        hi = fence = (tab == null) ? 0 : tab.length;
                    }
                    else
                        mc = expectedModCount;
                    if (tab != null && tab.length >= hi &&
                            (i = index) >= 0 && (i < (index = hi) || current != null)) {
                        Node<K,V> p = current;
                        current = null;
                        do {
                            if (p == null)
                                p = tab[i++];
                            else {
                                action.accept(p);
                                p = p.next;
                            }
                        } while (p != null || i < hi);
                        if (m.modCount != mc)
                            throw new ConcurrentModificationException();
                    }
                }

                public boolean tryAdvance(Consumer<? super Entry<K,V>> action) {
                    int hi;
                    if (action == null)
                        throw new NullPointerException();
                    Node<K,V>[] tab = map.table;
                    if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                        while (current != null || index < hi) {
                            if (current == null)
                                current = tab[index++];
                            else {
                                Node<K,V> e = current;
                                current = current.next;
                                action.accept(e);
                                if (map.modCount != expectedModCount)
                                    throw new ConcurrentModificationException();
                                return true;
                            }
                        }
                    }
                    return false;
                }

                public int characteristics() {
                    return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                            Spliterator.DISTINCT;
                }
            }

            /* ------------------------------------------------------------ */
            //支持LinkedHashMap功能


            /*
             * The following package-protected methods are designed to be
             * overridden by LinkedHashMap, but not by any other subclass.
             * Nearly all other internal methods are also package-protected
             * but are declared final, so can be used by LinkedHashMap, view
             * classes, and HashSet.
             * 下面的包级私方法被设计为由LinkedHashMap重写,但不能由其它任何子类重写.
             * 几乎所有其它的内部方法都是包级私有,但声明类型都为final,因此LinkedHashMap,视图类,HashSet都可以使用.
             */


            //创建常规节点(即为链表节点,非红黑树节点)
            Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
                return new Node<>(hash, key, value, next);
            }

            //从树节点转为普通节点
            Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
                return new Node<>(p.hash, p.key, p.value, next);
            }

            //创建红黑树节点
            TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
                return new TreeNode<>(hash, key, value, next);
            }

            //普通节点转为红黑树节点
            TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
                return new TreeNode<>(p.hash, p.key, p.value, next);
            }

            /**
             * 重置HashMap实例的一些域到默认状态.
             * 这一方法只会被clone()和readObject()这两个方法调用.
             */
            void reinitialize() {
                table = null;
                entrySet = null;
                keySet = null;
                values = null;
                modCount = 0;
                threshold = 0;
                size = 0;
            }

            // 回调以允许LinkedHashMap后置操作(访问,插入,删除)
            void afterNodeAccess(Node<K,V> p) { }
            void afterNodeInsertion(boolean evict) { }
            void afterNodeRemoval(Node<K,V> p) { }

            // 仅从writeObject调用,以确保兼容的排序。
            void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
                Node<K,V>[] tab;
                if (size > 0 && (tab = table) != null) {
                    for (int i = 0; i < tab.length; ++i) {
                        for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                            s.writeObject(e.key);
                            s.writeObject(e.value);
                        }
                    }
                }
            }

            /* --------------红黑树--------------- */

            /**
             * 红黑树entry。扩展LinkedHashMap.Entry(反过来扩展节点),因此可以用作普通或扩展的链表节点。
             */
            static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
                TreeNode<K,V> parent;  //红黑树连接点
                TreeNode<K,V> left; //左孩子
                TreeNode<K,V> right; //右孩子
                TreeNode<K,V> prev;    //删除节点时,需要断开链接,这个节点记录了删除节点的前一个节点.
                boolean red;
                TreeNode(int hash, K key, V val, Node<K,V> next) {
                    super(hash, key, val, next);
                }

                /**
                 * 返回当前节点的树根节点.
                 */
                final TreeNode<K,V> root() {
                    for (TreeNode<K,V> r = this, p;;) {
                        //如果r无双亲节点,则r为根节点
                        if ((p = r.parent) == null)
                            return r;
                        r = p;
                    }
                }

                /**
                 * 确保root节点为tab中的第一个节点
                 * tab:root节点所在红黑树节点数组
                 * 说白了就3个任务:
                 * 1.root节点从原位置删除
                 * 2.root节点插入到tab[index]位置
                 * 3.root作为根节点,更改后继和前驱.
                 */
                static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
                    int n;
                    //如果root节点不为null & tab不为null && tab.length>0
                    //n=tab.length
                    if (root != null && tab != null && (n = tab.length) > 0) {
                        //获取第一个节点在tab中的索引
                        int index = (n - 1) & root.hash;
                        //获取tab[index]节点
                        TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
                        //如果root节点不是first节点
                        if (root != first) {
                            Node<K,V> rn;
                            //root节点赋值给tab中第一个节点
                            tab[index] = root;
                            //保存root节点的前驱
                            TreeNode<K,V> rp = root.prev;
                            //如果root后继不为null
                            if ((rn = root.next) != null)
                                //root后继的前驱改为root的前驱,这样就把root从原位置移除掉了
                                ((TreeNode<K,V>)rn).prev = rp;
                            //如果root节点前驱的后继不为null,则root前驱的后继指向root的后继.
                            if (rp != null)
                                rp.next = rn;
                            //如果first不为null,则让first的前驱指向root
                            if (first != null)
                                first.prev = root;
                            //root的后继指向first
                            root.next = first;
                            //此时root无前驱了,无设为null,完成root在tab中第一的位置.
                            root.prev = null;
                        }
                        assert checkInvariants(root);
                    }
                }

                /**
                 * Finds the node starting at root p with the given hash and key.
                 * The kc argument caches comparableClassFor(key) upon first use
                 * comparing keys.
                 * 根据给定的key和hash,从红黑树的root节点开始查找.
                 * kc参数存在的意义:第一次使用时,缓存可比较的key.这样下次一样的key,则可以迅速找到该节点(当然map不能改变)
                 * @param h hash值
                 * @param k 查找key
                 * @param kc
                 * @return
                 */
                final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
                    TreeNode<K,V> p = this;
                    do {
                        int ph, dir; K pk;
                        TreeNode<K,V> pl = p.left, pr = p.right, q;
                        if ((ph = p.hash) > h)
                            p = pl;
                        else if (ph < h)
                            p = pr;
                        //hash,key都和当前节点p相同,则查找返回p~
                        else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                            return p;
                        //左子树为null,则遍历节点转为右子树
                        else if (pl == null)
                            p = pr;
                        //右子树为null,则遍历节点转为左子树
                        else if (pr == null)
                            p = pl;
                        //缓存非空
                        else if ((kc != null ||
                                (kc = comparableClassFor(k)) != null) &&
                                (dir = compareComparables(kc, k, pk)) != 0)
                            p = (dir < 0) ? pl : pr;
                        //右子树递归
                        else if ((q = pr.find(h, k, kc)) != null)
                            return q;
                        else
                            p = pl;
                    } while (p != null);
                    return null;
                }

                /**
                 * 查找root节点时,本方法被调用.
                 */
                final TreeNode<K,V> getTreeNode(int h, Object k) {
                    return ((parent != null) ? root() : this).find(h, k, null);
                }

                /**
                 * Tie-breaking工具是为了插入元素具有相同的hash值且无法进行其它比较时,对插入顺序进行排序.
                 * 我们并不需要一个完全的排序,只需要一个一致的插入规则来维护等价重叠.
                 * 本方法比单纯的检测一个二进制位的方式更有必要.
                 */
                static int tieBreakOrder(Object a, Object b) {
                    int d;
                    //如果a和b中至少一个为null 或者 a和b类型相同
                    if (a == null || b == null ||
                            (d = a.getClass().getName().
                                    compareTo(b.getClass().getName())) == 0)
                        //identityHashCode和hashCode返回相同值
                        d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                                -1 : 1);
                    return d;
                }

                /**
                 * 整理连接此节点的整棵红黑树上的所有节点.
                 * 此方法用法:在插入,删除节点后,红黑树性质被破坏时,进行结构的调整.
                 * @return 返回树根节点
                 */
                final void treeify(Node<K,V>[] tab) {
                    TreeNode<K,V> root = null;
                    for (TreeNode<K,V> x = this, next; x != null; x = next) {
                        next = (TreeNode<K,V>)x.next;
                        x.left = x.right = null;
                        if (root == null) {
                            x.parent = null;
                            x.red = false;
                            root = x;
                        }
                        else {
                            K k = x.key;
                            int h = x.hash;
                            Class<?> kc = null;
                            for (TreeNode<K,V> p = root;;) {
                                int dir, ph;
                                K pk = p.key;
                                if ((ph = p.hash) > h)
                                    dir = -1;
                                else if (ph < h)
                                    dir = 1;
                                else if ((kc == null &&
                                        (kc = comparableClassFor(k)) == null) ||
                                        (dir = compareComparables(kc, k, pk)) == 0)
                                    dir = tieBreakOrder(k, pk);

                                TreeNode<K,V> xp = p;
                                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                                    x.parent = xp;
                                    if (dir <= 0)
                                        xp.left = x;
                                    else
                                        xp.right = x;
                                    root = balanceInsertion(root, x);
                                    break;
                                }
                            }
                        }
                    }
                    moveRootToFront(tab, root);
                }

                /**
                 * 返回非TreeNode节点的列表,替换那些从此节点链接的节点,此节点作为返回链表的头节点。
                 */
                final Node<K,V> untreeify(HashMap<K,V> map) {
                    Node<K,V> hd = null, tl = null;
                    for (Node<K,V> q = this; q != null; q = q.next) {
                        Node<K,V> p = map.replacementNode(q, null);
                        if (tl == null)
                            hd = p;
                        else
                            tl.next = p;
                        tl = p;
                    }
                    return hd;
                }

                /**
                 * Tree version of putVal.
                 */
                final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                               int h, K k, V v) {
                    Class<?> kc = null;
                    boolean searched = false;
                    TreeNode<K,V> root = (parent != null) ? root() : this;
                    for (TreeNode<K,V> p = root;;) {
                        int dir, ph; K pk;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                            return p;
                        else if ((kc == null &&
                                (kc = comparableClassFor(k)) == null) ||
                                (dir = compareComparables(kc, k, pk)) == 0) {
                            if (!searched) {
                                TreeNode<K,V> q, ch;
                                searched = true;
                                if (((ch = p.left) != null &&
                                        (q = ch.find(h, k, kc)) != null) ||
                                        ((ch = p.right) != null &&
                                                (q = ch.find(h, k, kc)) != null))
                                    return q;
                            }
                            //查找插入规则
                            dir = tieBreakOrder(k, pk);
                        }

                        TreeNode<K,V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            Node<K,V> xpn = xp.next;
                            //生成新节点
                            TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            xp.next = x;
                            x.parent = x.prev = xp;
                            if (xpn != null)
                                ((TreeNode<K,V>)xpn).prev = x;
                            //插入节点后,将树根调整到bucket中
                            moveRootToFront(tab, balanceInsertion(root, x));
                            return null;
                        }
                    }
                }

                /**
                 * 移除红黑树中的参数节点node,要求在此方法调用前,这个节点必须存在.
                 * 这比典型的红黑删除代码更加混乱,因为我们不能将内部节点的内容与被可访问的,遍历期间独立的“下一个”指针固定的叶子后继交换.
                 * 相反,我们交换了树的连接(因为左旋或者右旋完成的就是改变子树间的连接)
                 * 删除节点后,如果当前红黑树中节点个数太少,到达6个后,就会转为普通链表存储.
                 * (红黑树到链表的转换节点个数标准为:2~6,这具体取决于红黑树结构)
                 */
                final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
                                          boolean movable) {
                    int n;
                    if (tab == null || (n = tab.length) == 0)
                        return;
                    int index = (n - 1) & hash;
                    TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
                    TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
                    if (pred == null)
                        tab[index] = first = succ;
                    else
                        pred.next = succ;
                    if (succ != null)
                        succ.prev = pred;
                    if (first == null)
                        return;
                    if (root.parent != null)
                        root = root.root();
                    if (root == null || root.right == null ||
                            (rl = root.left) == null || rl.left == null) {
                        tab[index] = first.untreeify(map);  // too small
                        return;
                    }
                    TreeNode<K,V> p = this, pl = left, pr = right, replacement;
                    if (pl != null && pr != null) {
                        TreeNode<K,V> s = pr, sl;
                        while ((sl = s.left) != null) // find successor
                            s = sl;
                        boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                        TreeNode<K,V> sr = s.right;
                        TreeNode<K,V> pp = p.parent;
                        if (s == pr) { // p was s's direct parent
                            p.parent = s;
                            s.right = p;
                        }
                        else {
                            TreeNode<K,V> sp = s.parent;
                            if ((p.parent = sp) != null) {
                                if (s == sp.left)
                                    sp.left = p;
                                else
                                    sp.right = p;
                            }
                            if ((s.right = pr) != null)
                                pr.parent = s;
                        }
                        p.left = null;
                        if ((p.right = sr) != null)
                            sr.parent = p;
                        if ((s.left = pl) != null)
                            pl.parent = s;
                        if ((s.parent = pp) == null)
                            root = s;
                        else if (p == pp.left)
                            pp.left = s;
                        else
                            pp.right = s;
                        if (sr != null)
                            replacement = sr;
                        else
                            replacement = p;
                    }
                    else if (pl != null)
                        replacement = pl;
                    else if (pr != null)
                        replacement = pr;
                    else
                        replacement = p;
                    if (replacement != p) {
                        TreeNode<K,V> pp = replacement.parent = p.parent;
                        if (pp == null)
                            root = replacement;
                        else if (p == pp.left)
                            pp.left = replacement;
                        else
                            pp.right = replacement;
                        p.left = p.right = p.parent = null;
                    }

                    TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);

                    if (replacement == p) {  // detach
                        TreeNode<K,V> pp = p.parent;
                        p.parent = null;
                        if (pp != null) {
                            if (p == pp.left)
                                pp.left = null;
                            else if (p == pp.right)
                                pp.right = null;
                        }
                    }
                    if (movable)
                        moveRootToFront(tab, r);
                }

                /**
                 * 将红黑树中的节点分隔为较低和较高的树形结构,如果树中节点个数为6,则将转为链表.
                 * 这一方法只在resize()时被调用.
                 * 可以查看上面关于分隔位和索引的讨论.
                 * @param index 用于分隔的table索引
                 * @param bit the bit of hash to split on
                 */
                final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
                    TreeNode<K,V> b = this;
                    // Relink into lo and hi lists, preserving order
                    TreeNode<K,V> loHead = null, loTail = null;
                    TreeNode<K,V> hiHead = null, hiTail = null;
                    int lc = 0, hc = 0;
                    for (TreeNode<K,V> e = b, next; e != null; e = next) {
                        next = (TreeNode<K,V>)e.next;
                        e.next = null;
                        if ((e.hash & bit) == 0) {
                            if ((e.prev = loTail) == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                            ++lc;
                        }
                        else {
                            if ((e.prev = hiTail) == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                            ++hc;
                        }
                    }

                    if (loHead != null) {
                        if (lc <= UNTREEIFY_THRESHOLD)
                            tab[index] = loHead.untreeify(map);
                        else {
                            tab[index] = loHead;
                            if (hiHead != null) // (else is already treeified)
                                loHead.treeify(tab);
                        }
                    }
                    if (hiHead != null) {
                        if (hc <= UNTREEIFY_THRESHOLD)
                            tab[index + bit] = hiHead.untreeify(map);
                        else {
                            tab[index + bit] = hiHead;
                            if (loHead != null)
                                hiHead.treeify(tab);
                        }
                    }
                }

                /* --------------------红黑树方法--------------------------------- */
                // Red-black tree methods, all adapted from CLR
                //左旋方法
                static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root, TreeNode<K,V> p) {
                    TreeNode<K,V> r, pp, rl;
                    //如果p不为null & p有孩子不为null
                    //r=p.right
                    //不平衡原因:在p的右孩子上面插入节点
                    if (p != null && (r = p.right) != null) {
                        //rl指向从r上面拿下的左子树
                        if ((rl = p.right = r.left) != null)
                            //rl双亲节点改为p
                            rl.parent = p;
                        //p为根节点时,r变为根节点,且更改颜色为黑色.
                        if ((pp = r.parent = p.parent) == null)
                            (root = r).red = false;
                        //p为内部节点,且为pp的左孩子
                        else if (pp.left == p)
                            pp.left = r;
                        //p为内部节,且为pp的右孩子
                        else
                            pp.right = r;
                        //r的左孩子指向p
                        r.left = p;
                        //p的双亲节点指向r
                        p.parent = r;
                    }
                    //返回根节点
                    return root;
                }

                //右旋方法
                static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
                                                       TreeNode<K,V> p) {
                    TreeNode<K,V> l, pp, lr;
                    //如果p不为null且p的左孩子不为null
                    //红黑树不平衡原因:在p的左孩子上插入一个node
                    if (p != null && (l = p.left) != null) {
                        //l的右子树变为p的右子树
                        //lr指向p的左子树
                        if ((lr = p.left = l.right) != null)
                            //lr的双亲节点改为p
                            lr.parent = p;
                        //如果p为根节点
                        if ((pp = l.parent = p.parent) == null)
                            //l节点颜色改为黑色(因为红黑树根节点必须为黑色)
                            (root = l).red = false;
                        //如果p为内部节点,且p为右节点
                        else if (pp.right == p)
                            pp.right = l;
                        //p为左节点
                        else
                            pp.left = l;
                        //p为l的右子树
                        l.right = p;
                        //p的双亲节点为l
                        p.parent = l;
                    }
                    //返回根节点
                    return root;
                }

                //插入节点后,调整平衡(调用左旋+右旋方法+颜色调整)
                static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                            TreeNode<K,V> x) {
                    x.red = true;
                    for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
                        if ((xp = x.parent) == null) {
                            x.red = false;
                            return x;
                        }
                        else if (!xp.red || (xpp = xp.parent) == null)
                            return root;
                        if (xp == (xppl = xpp.left)) {
                            if ((xppr = xpp.right) != null && xppr.red) {
                                xppr.red = false;
                                xp.red = false;
                                xpp.red = true;
                                x = xpp;
                            }
                            else {
                                if (x == xp.right) {
                                    root = rotateLeft(root, x = xp);
                                    xpp = (xp = x.parent) == null ? null : xp.parent;
                                }
                                if (xp != null) {
                                    xp.red = false;
                                    if (xpp != null) {
                                        xpp.red = true;
                                        root = rotateRight(root, xpp);
                                    }
                                }
                            }
                        }
                        else {
                            if (xppl != null && xppl.red) {
                                xppl.red = false;
                                xp.red = false;
                                xpp.red = true;
                                x = xpp;
                            }
                            else {
                                if (x == xp.left) {
                                    root = rotateRight(root, x = xp);
                                    xpp = (xp = x.parent) == null ? null : xp.parent;
                                }
                                if (xp != null) {
                                    xp.red = false;
                                    if (xpp != null) {
                                        xpp.red = true;
                                        root = rotateLeft(root, xpp);
                                    }
                                }
                            }
                        }
                    }
                }
                //删除节点后,调整红黑树(左旋方法+右旋方法+颜色调整)
                static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
                                                           TreeNode<K,V> x) {
                    for (TreeNode<K,V> xp, xpl, xpr;;)  {
                        if (x == null || x == root)
                            return root;
                        else if ((xp = x.parent) == null) {
                            x.red = false;
                            return x;
                        }
                        else if (x.red) {
                            x.red = false;
                            return root;
                        }
                        else if ((xpl = xp.left) == x) {
                            if ((xpr = xp.right) != null && xpr.red) {
                                xpr.red = false;
                                xp.red = true;
                                root = rotateLeft(root, xp);
                                xpr = (xp = x.parent) == null ? null : xp.right;
                            }
                            if (xpr == null)
                                x = xp;
                            else {
                                TreeNode<K,V> sl = xpr.left, sr = xpr.right;
                                if ((sr == null || !sr.red) &&
                                        (sl == null || !sl.red)) {
                                    xpr.red = true;
                                    x = xp;
                                }
                                else {
                                    if (sr == null || !sr.red) {
                                        if (sl != null)
                                            sl.red = false;
                                        xpr.red = true;
                                        root = rotateRight(root, xpr);
                                        xpr = (xp = x.parent) == null ?
                                                null : xp.right;
                                    }
                                    if (xpr != null) {
                                        xpr.red = (xp == null) ? false : xp.red;
                                        if ((sr = xpr.right) != null)
                                            sr.red = false;
                                    }
                                    if (xp != null) {
                                        xp.red = false;
                                        root = rotateLeft(root, xp);
                                    }
                                    x = root;
                                }
                            }
                        }
                        else { // symmetric
                            if (xpl != null && xpl.red) {
                                xpl.red = false;
                                xp.red = true;
                                root = rotateRight(root, xp);
                                xpl = (xp = x.parent) == null ? null : xp.left;
                            }
                            if (xpl == null)
                                x = xp;
                            else {
                                TreeNode<K,V> sl = xpl.left, sr = xpl.right;
                                if ((sl == null || !sl.red) &&
                                        (sr == null || !sr.red)) {
                                    xpl.red = true;
                                    x = xp;
                                }
                                else {
                                    if (sl == null || !sl.red) {
                                        if (sr != null)
                                            sr.red = false;
                                        xpl.red = true;
                                        root = rotateLeft(root, xpl);
                                        xpl = (xp = x.parent) == null ?
                                                null : xp.left;
                                    }
                                    if (xpl != null) {
                                        xpl.red = (xp == null) ? false : xp.red;
                                        if ((sl = xpl.left) != null)
                                            sl.red = false;
                                    }
                                    if (xp != null) {
                                        xp.red = false;
                                        root = rotateRight(root, xp);
                                    }
                                    x = root;
                                }
                            }
                        }
                    }
                }

                /**
                 * 检查树是否符合红黑树定义
                 */
                static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
                    TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
                            tb = t.prev, tn = (TreeNode<K,V>)t.next;
                    if (tb != null && tb.next != t)
                        return false;
                    if (tn != null && tn.prev != t)
                        return false;
                    if (tp != null && t != tp.left && t != tp.right)
                        return false;
                    if (tl != null && (tl.parent != t || tl.hash > t.hash))
                        return false;
                    if (tr != null && (tr.parent != t || tr.hash < t.hash))
                        return false;
                    if (t.red && tl != null && tl.red && tr != null && tr.red)
                        return false;
                    if (tl != null && !checkInvariants(tl))
                        return false;
                    if (tr != null && !checkInvariants(tr))
                        return false;
                    return true;
                }
            }

        }

    原文作者:java集合源码分析
    原文地址: https://blog.csdn.net/oqkdws/article/details/80235607
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞