Java源码分析之HashMap(JDK1.8)

一、HashMap概述

  HashMap是常用的Java集合之一,是基于哈希表的Map接口的实现。与HashTable主要区别为不支持同步和允许null作为key和value。由于HashMap不是线程安全的,如果想要线程安全,可以使用ConcurrentHashMap代替。

二、HashMap数据结构

  HashMap的底层是哈希数组,数组元素为Entry。HashMap通过key的hashCode来计算hash值,当hashCode相同时,通过“拉链法”解决冲突,如下图所示。

《Java源码分析之HashMap(JDK1.8)》

  相比于之前的版本,jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。原本Map.Entry接口的实现类Entry改名为了Node。转化为红黑树时改用另一种实现TreeNode。
  

Node类

static class Node<K,V> implements Map.Entry<K,V> {
        final int hash; // 哈希值
        final K key;
        V value;
        Node<K,V> next; // 指向下一个节点

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

TreeNode类

    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }
    }

  HashMap就是这样一个Entry(包括Node和TreeNode)数组,Node对象中包含键、值和hash值,next指向下一个Entry,用来处理哈希冲突。TreeNode对象包含指向父节点、子节点和前一个节点(移除对象时使用)的指针,以及表示红黑节点的boolean标识。

三、HashMap源码分析

1. 主要属性

    transient Node<K,V>[] table; // 哈希数组

    transient Set<Map.Entry<K,V>> entrySet; // entry缓存Set

    transient int size; // 元素个数

    transient int modCount; // 修改次数

    int threshold; // 阈值,等于加载因子*容量,当实际大小超过阈值则进行扩容

    final float loadFactor; // 加载因子,默认值为0.75

2. 构造方法

  以下是HashMap的几个构造方法。

    /** * 根据初始化容量和加载因子构建一个空的HashMap. */
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    /** * 使用初始化容量和默认加载因子(0.75). */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /** * 使用默认初始化大小(16)和默认加载因子(0.75). */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    /** * 用已有的Map构造一个新的HashMap. */
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

3. 数据存取

  • putAll方法
    public void putAll(Map<? extends K, ? extends V> m) {
        putMapEntries(m, true);
    }

    /** * Implements Map.putAll and Map constructor * * @param m the map * @param evict false when initially constructing this map, else * true (relayed to method afterNodeInsertion). */
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            else if (s > threshold)
                resize();
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict); // put核心方法
            }
        }
    }
  • put方法
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0) // table为空或length为0
            n = (tab = resize()).length; // 初始化
        if ((p = tab[i = (n - 1) & hash]) == null) // 如果hash所在位置为null,直接put
            tab[i] = newNode(hash, key, value, null);
        else { // tab[i]有元素,遍历节点后添加
            Node<K,V> e; K k;
            // 如果hash、key都相等,直接覆盖
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode) // 红黑树添加节点
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else { // 链表
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) { // 找到链表最后一个节点,插入新节点
                        p.next = newNode(hash, key, value, null);
                        // 链表节点大于阈值8,调用treeifyBin方法,当tab.length大于64将链表改为红黑树
                        // 如果tab.length < 64或tab为null,则调用resize方法重构链表.
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    // hash、key都相等,此时节点即要更新节点
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            // 当前节点e = p.next不为null,表示链表中原本存在相同的key,则返回oldValue
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                // onlyIfAbsent值为false,参数主要决定存在相同key时是否执行替换
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold) // 检查是否超过阈值
            resize();
        afterNodeInsertion(evict);
        return null; // 原HashMap中不存在相同的key,插入键值对后返回null
    }
  • get方法
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /** * Implements Map.get and related methods * * @param hash hash for key * @param key the key * @return the node, or null if none */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode) // 红黑树
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                // 链表
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

    // 遍历红黑树搜索节点
    /** * Calls find for root node. */
    final TreeNode<K,V> getTreeNode(int h, Object k) {
        return ((parent != null) ? root() : this).find(h, k, null);
    }

    /** * Returns root of tree containing this node. */
    final TreeNode<K,V> root() {
        for (TreeNode<K,V> r = this, p;;) {
            if ((p = r.parent) == null)
                return r;
            r = p;
        }
    }

    /** * Finds the node starting at root p with the given hash and key. * The kc argument caches comparableClassFor(key) upon first use * comparing keys. */
    final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
        TreeNode<K,V> p = this;
        do {
            int ph, dir; K pk;
            TreeNode<K,V> pl = p.left, pr = p.right, q;
            if ((ph = p.hash) > h) // 当前节点hash大
                p = pl; // 查左子树
            else if (ph < h) // 当前节点hash小
                p = pr; // 查右子树
            else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                return p; // hash、key都相等,即找到,返回当前节点
            else if (pl == null) // hash相等,key不等,左子树为null,查右子树
                p = pr;
            else if (pr == null)
                p = pl;
            else if ((kc != null ||
                      (kc = comparableClassFor(k)) != null) &&
                     (dir = compareComparables(kc, k, pk)) != 0)
                p = (dir < 0) ? pl : pr;
            else if ((q = pr.find(h, k, kc)) != null)
                return q;
            else
                p = pl;
        } while (p != null);
        return null;
    }
  • remove方法
    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

    /** * Implements Map.remove and related methods * * @param hash hash for key * @param key the key * @param value the value to match if matchValue, else ignored * @param matchValue if true only remove if value is equal * @param movable if false do not move other nodes while removing * @return the node, or null if none */
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            // 直接命中
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode) // 在红黑树中查找
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else { // 在链表中查找
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            // 命中后删除
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode) // 在红黑树中删除节点
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p) // 链表首节点删除
                    tab[index] = node.next;
                else // 多节点链表删除
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }
  • clear方法
    /** * Removes all of the mappings from this map. * The map will be empty after this call returns. */
    public void clear() {
        Node<K,V>[] tab;
        modCount++;
        if ((tab = table) != null && size > 0) {
            size = 0;
            for (int i = 0; i < tab.length; ++i)
                tab[i] = null; // 把哈希数组中所有位置都赋为null
        }
    }

四、总结

  本文从源码入手,简单地分析了HashMap底层的结构和实现。在源码分析部分主要分析了常用的几个方法,还有一些方法比如调整哈希表大小的resize、将链表转化为红黑树的treeify以及逆操作untreeify等,在此不再详细分析。红黑树部分的代码只理解了大概,实现细节上还有待进一步阅读分析。
  

    原文作者:逝水寒缘
    原文地址: https://blog.csdn.net/u014026363/article/details/56342142
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞