高手谈Android NDK C++ RTTI 分析

本文意在说明Android NDK 在实现C++ RTTI时的相关数据结构,并从汇编角度分析其内存布局,以帮助理解RTTI的实现原理,同时,分析在逆向过程中如何利用RTTI恢复C++类名信息。

《高手谈Android NDK C++ RTTI 分析》

用ndk-build编译C++代码时,默认的C++运行时库(libstdc++)是不支持RTTI的, 需要在Application.mk与Android.mk中进行配置。其它可以选择的C++运行时库有GAbi++、STLport、GNU STL、LLVM libc++, 各种库又分静态链接库与动态链接库。其中中STLport的RTTI是借用了GAbi++中的实现,另外GNU STL、LLVM libc++的实现也与GAbi++非常相似(相关数据结构的命名、结构都相似, 可能是因为都是基于Itanium C++ ABI。

所以本文将选择STLPort为C++运行时库, 在Application.mk中配置:

APP_STL := stlport_static

在Android.mk中配置:

LOCAL_CPP_FEATURES := rtti

另外,本文使用 Android NDK 10c编译,编译abi为armeabi,编译32位代码时其默认使用GCC 4.8。若使用其它版本NDK或者其它编译器,可能与本文分析结果有差异。

一、C++ RTTI 简介

RTTI是Runtime Type Identification的缩写,即运行时类型识别。程序能够借此使用基类的指针或引用,来检查这些指针或引用所指的对象的实际派生类型。C++通过typeid与dynamic_cast来提供RTTI。typeid返回一个typeinfo对象的引用,它记录了与类型相关的信息,后文将详细分析这个结构;dynamic_cast用于安全而有效地进行向下转型(down_cast),即安全地将一个基类指针转换为一个派生类指针。

它们的基本使用方法如下:

classes.h文件:

classBase

{

public:

Base();

virtual ~Base();

virtualvoidFunc();

private:

intmMember;

};

classDeriver1 :publicBase

{

public:

Deriver1();

virtual ~Deriver1();

virtualvoidFunc();

private:

intmDeriver1Member;

};

classDeriver2 :publicBase

{

public:

Deriver2();

virtual ~Deriver2();

virtualvoidFunc();

private:

intmDeriver2Member;

};

main.cpp文件:

intmain()

{

Base base;

Deriver1 deriver1;

Deriver2 deriver2;

cout<

cout<

cout<

Base *pBase = &deriver1;

cout<

cout<

cout << pBase << endl;

Driver1 *pDeriver1 = dynamic_cast(pBase);

cout << pDeriver1 << endl;

Driver2 *pDeriver2 = dynamic_cast(pBase);//正确,返回NULL

cout << pDeriver2 << endl;

pDeriver2 = (Deriver2*)pBase;//错误

cout << pDeriver2 << endl;

pDeriver2 = static_cast(pBase);//错误

cout << pDeriver2 << endl;return 0;

}

编译成可执行文件,push到android 手机上运行,输出:

i <——- typeid(int).name(), 变量类型

4Base <——- typeid(Base).name(), 类名

4Base <——- typeid(base).name(), 变量

P4Base <——- typeid(pBase).name(), Base的指针类型

8Deriver1 <——- typeid(*pBase).name(), pBase实际指向一个Deriver1

0xbec87a20

0xbec87a20 <—– 正确的转换,指向deriver1的基类指针可以转换为Deriver1类型指针

0x00000000 <—– 正确的转换,因为指向deriver1的基类指针并不能转换为Deriver2类型指针

0xbec87a20 <—– 错误,若继续使用,可能会导致内存访问出错,即将Dervier1当Deriver2用

0xbec87a20 <—– 错误,若继续使用,可能会导致内存访问出错

P.S. 上面看到显示的类名与我们定义的不完全一样,是因为为了保证每个类名称在程序中的唯一性,编译器会通过一定的规则对原始类名进行改写,如想了解这一规则,可以以name mangling为关键词进行搜索。

二、RTTI 相关数据结构

上文说到typeid将返回一个typeinfo对象的const引用,RTTI就是依赖typeinfo类及其派生类来实现的,下面介绍下这些类。

在NDK路径下\android-ndk-r10c\sources\cxx-stl\gabi++\include\typeinfo文件中有定义这个类:

classtype_info

{public:

virtual ~type_info();

//….

private:

//….

const char*__type_name;// 这个字段记录改写过后的类名

};

在NDK路径下\android-ndk-r10c\sources\cxx-stl\gabi++\src\cxxabi_defines.h有定义一些typeinfo的派生类,此处挑一些我们感兴趣的类列举:

class__shim_type_info :publicstd::type_info{….}

// 无基类的类的typeinfo类型

class__class_type_info :public__shim_type_info{…..}

//只有一个public非虚基类,且基类偏移为0的类的typeinfo

class__si_class_type_info :public__class_type_info{

public:

virtual ~__si_class_type_info();const__class_type_info *__base_type;

//……

}

// 有基类但不满足 __si_class_type_info 约束条件的其它类的typeinfo

class__vmi_class_type_info :public__class_type_info{

public:

virtual ~__vmi_class_type_info();

unsignedint__flags;

unsignedint__base_count;

__base_class_type_info __base_info[1];

//……

}

// Used in __vmi_class_type_info

struct __base_class_type_info{

public:

const__class_type_info *__base_type;long__offset_flags;

// …….

}

以第1小节中的程序为例,Base、Driver1的对象的内存布局如下:

《高手谈Android NDK C++ RTTI 分析》

deriver2的内存布局与deriver1相似,这里没有重复画出。从上图可以看到,每一个类的虚表索引为-1的位置存放着typeinfo的指针,并根据类的不同,该指针指向不同的typeinfo派生类实例。比如Base类无基类,所以其typeinfo指针指向__class_type_info的实例;而Deriver1继承自Base, deriver1在其偏移为0的位置包含一个public非虚基类实例,所以它的typeinfo指针指向__si_class_type_info实例。使用dynamic_cast的时候,正是根据这些typeinfo指针来判断一个基类指针是否可以转换为一个派生类指针。而且由上可见,若一个待操作的类没有虚函数表, typeid也只能返回其静态类型。

下面我们通过反编译代码来验证上面的关系图。

三、逆向过程中利用RTTI恢复类名

将第1小节中生成的可执行程序用IDA Pro打开,此处选用obj\local\armeabi\目录下未经过strip的程序,以方便分析。

根据相关字符串,可以很快定位各个类的typeinfo信息:

《高手谈Android NDK C++ RTTI 分析》

各个类的虚函数表结构:

《高手谈Android NDK C++ RTTI 分析》

可见,从反编译的代码看,虚表、typeinfo信息关系与第3节中描述一致。(细心的朋友可能有疑问,为什么会产生两个析构函数?对于这个问题,可以以Itanium C++ ABI为关键字搜索了解)

对于通常的逆向分析,都没有没有上面的符号信息的。所以我们可以通过RTTI信息来恢复类名及其类间关系,为逆向工作提供便利。可以按以下步骤进行:

定位__class_type_info, __si_class_type_info, __vmi_class_type_info虚函数表。

查找对这些虚函数表的引用,我们可以得到这些typeinfo派生类的实例地址。而这些实例中type_name字段就表示原始类名。

根据引用这些实例地址,就可以得到相关类的虚表地址,此处我们可以根据上一步得到的原始类名重命名虚表指针。

查找引用这些虚表指针的代码,通常都是类的构造函数,于是我们又可以重命名这些构造函数了。

以上步骤我们都可以通过IDAPython脚本自动完成。

四、小结

其实上面只是分析了最简单的单继承情景,还有诸如多继承、虚继承等情景待分析,由于相关typeinfo类已经例出,相信分析难度不大。

另外需要注意的一个地方,在反汇编后的代码中,并不是直接引用虚表地址,而是引用虚表地址-8的位置,用这个位置+8写入当作虚拟指针。

以上分析过程与结论都来自个人认知,如有错误,欢迎指正。

    原文作者:网易加固
    原文地址: https://www.jianshu.com/p/0d6a5752a5b0
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞