数据处理之PCA

推荐好文PCA的数学原理
本文将会用Python来实现PCA,帮助更好的理解

视频地址:https://www.youtube.com/watch?v=koiTTim4M-s
notebook地址:https://github.com/zhuanxuhit/nd101/blob/master/1.Intro_to_Deep_Learning/5.How_to_Make_Data_Amazing/pca_demo.ipynb
参考文章:https://plot.ly/ipython-notebooks/principal-component-analysis/

1. 获取数据

我们用的数据是150个鸢尾花,然后通过4个维度刻画

%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import pandas as pd

df = pd.read_csv(
    filepath_or_buffer='https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', 
    header=None, 
    sep=',')

df.columns=['sepal_len', 'sepal_wid', 'petal_len', 'petal_wid', 'class']
df.dropna(how="all", inplace=True) # drops the empty line at file-end

df.head()
X = df.ix[:,0:4].values
y = df.ix[:,4].values

现在上面数据处理后,x是一个150 * 4 的矩阵,每一行都是一个样本,y是一个 150 * 1 是向量,每个都是一个分类

我们下一步是来看3类型的花怎么分布在4个特征上,我们可以通过直方图来展示

import plotly.plotly as py
from plotly.graph_objs import *
import plotly.tools as tls
# plotting histograms
tls.set_credentials_file(username='zhuanxuhit', api_key='30dCVmghG2CqKQqfSzsu')

traces = []

legend = {0:False, 1:False, 2:False, 3:True}

colors = {'Iris-setosa': 'rgb(31, 119, 180)', 
          'Iris-versicolor': 'rgb(255, 127, 14)', 
          'Iris-virginica': 'rgb(44, 160, 44)'}

for col in range(4):
    for key in colors:
        traces.append(Histogram(x=X[y==key, col], 
                        opacity=0.75,
                        xaxis='x%s' %(col+1),
                        marker=Marker(color=colors[key]),
                        name=key,
                        showlegend=legend[col]))

data = Data(traces)

layout = Layout(barmode='overlay',
                xaxis=XAxis(domain=[0, 0.25], title='sepal length (cm)'),
                xaxis2=XAxis(domain=[0.3, 0.5], title='sepal width (cm)'),
                xaxis3=XAxis(domain=[0.55, 0.75], title='petal length (cm)'),
                xaxis4=XAxis(domain=[0.8, 1], title='petal width (cm)'),
                yaxis=YAxis(title='count'),
                title='Distribution of the different Iris flower features')

fig = Figure(data=data, layout=layout)
py.iplot(fig,filename = 'basic-line')

《数据处理之PCA》 Paste_Image.png

规范化

我们将数据转化为 mean=0 and variance=1 的数据

from sklearn.preprocessing import StandardScaler
X_std = StandardScaler().fit_transform(X)
X_std.shape
(150, 4)
import numpy as np
mean_vec = X_std.mean(axis=0)
mean_vec # 均值为0
array([ -4.73695157e-16,  -6.63173220e-16,   3.31586610e-16,
        -2.84217094e-16])
X_std.std(axis=0) # 方差为1
array([ 1.,  1.,  1.,  1.])
# 获得原矩阵的信息
scaler = StandardScaler().fit(X)
scaler.mean_
array([ 5.84333333,  3.054     ,  3.75866667,  1.19866667])
scaler.scale_
array([ 0.82530129,  0.43214658,  1.75852918,  0.76061262])
x_scale = scaler.transform(X) 
# np.mean(x_scale,axis=0) # 均值为0

特征分解

下一步我们就做PCA的核心:计算特征值和特征向量
列举下目前我们的状态

  1. 我们有150个4维的数据,组成了 4 * 150的矩阵 X
  2. 假设 C = 1/150 * X * T(X), 则C是一个对称矩阵,而且是 4 * 4 的,其对角是各个字段的方差,而第i行j列和j行i列元素相同,表示i和j两个字段的协方差。
X_scale = X_std.T
X_scale.shape
(4, 150)
cov_mat = X_scale.dot(X_scale.T)/X_scale.shape[1]
print('Covariance matrix \n%s' %cov_mat)
Covariance matrix 
[[ 1.         -0.10936925  0.87175416  0.81795363]
 [-0.10936925  1.         -0.4205161  -0.35654409]
 [ 0.87175416 -0.4205161   1.          0.9627571 ]
 [ 0.81795363 -0.35654409  0.9627571   1.        ]]
print('NumPy covariance matrix: \n%s' %np.cov(X_scale))
NumPy covariance matrix: 
[[ 1.00671141 -0.11010327  0.87760486  0.82344326]
 [-0.11010327  1.00671141 -0.42333835 -0.358937  ]
 [ 0.87760486 -0.42333835  1.00671141  0.96921855]
 [ 0.82344326 -0.358937    0.96921855  1.00671141]]

接着我们计算协方差矩阵cov_mat的特征值和特征向量

cov_mat = X_scale.dot(X_scale.T)/X_scale.shape[1]
eig_vals, eig_vecs = np.linalg.eig(cov_mat)

print('Eigenvectors \n%s' %eig_vecs)
print('\nEigenvalues \n%s' %eig_vals)
Eigenvectors 
[[ 0.52237162 -0.37231836 -0.72101681  0.26199559]
 [-0.26335492 -0.92555649  0.24203288 -0.12413481]
 [ 0.58125401 -0.02109478  0.14089226 -0.80115427]
 [ 0.56561105 -0.06541577  0.6338014   0.52354627]]

Eigenvalues 
[ 2.91081808  0.92122093  0.14735328  0.02060771]
# eig_vecs.T.dot(cov_mat).dot(eig_vecs) = eig_vals 对象矩阵

我们也可以通过其他命令一次性就获取特征向量和特征值:

cor_mat2 = np.corrcoef(X.T)

eig_vals, eig_vecs = np.linalg.eig(cor_mat2)

print('Eigenvectors \n%s' %eig_vecs)
print('\nEigenvalues \n%s' %eig_vals)
Eigenvectors 
[[ 0.52237162 -0.37231836 -0.72101681  0.26199559]
 [-0.26335492 -0.92555649  0.24203288 -0.12413481]
 [ 0.58125401 -0.02109478  0.14089226 -0.80115427]
 [ 0.56561105 -0.06541577  0.6338014   0.52354627]]

Eigenvalues 
[ 2.91081808  0.92122093  0.14735328  0.02060771]

选择主成分

现在我们有了特征向量,特征向量中的每一个都可以认为是单位长度为1的基,我们来验证下:

for ev in eig_vecs:
    print(ev)
    np.testing.assert_array_almost_equal(1.0,
                                         np.linalg.norm(ev))
print('Everything ok!')
[ 0.52237162 -0.37231836 -0.72101681  0.26199559]
[-0.26335492 -0.92555649  0.24203288 -0.12413481]
[ 0.58125401 -0.02109478  0.14089226 -0.80115427]
[ 0.56561105 -0.06541577  0.6338014   0.52354627]
Everything ok!
np.sum(( eig_vecs[0] )**2) # np.linalg.norm 范数  
0.99999999999999922

现在有4个向量基,下一步要确定的是哪个方向上投影后能够让方差最大

# Make a list of (eigenvalue, eigenvector) tuples
eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i]) for i in range(len(eig_vals))]

# Sort the (eigenvalue, eigenvector) tuples from high to low
eig_pairs.sort()
eig_pairs.reverse()

# Visually confirm that the list is correctly sorted by decreasing eigenvalues
print('Eigenvalues in descending order:')
for i in eig_pairs:
    print(i[0])
Eigenvalues in descending order:
2.91081808375
0.921220930707
0.147353278305
0.0206077072356

解释方差

分析完信息最多的投影方向后,下面就是要决定我们要选择多少个投影基来投影了

tot = sum(eig_vals) # 所有特征值的和
var_exp = [(i / tot)*100 for i in sorted(eig_vals, reverse=True)] # 每个特征值的百分比
var_exp
[72.770452093801353,
 23.030523267680632,
 3.6838319576273935,
 0.51519268089062353]
cum_var_exp = np.cumsum(var_exp) # 计算累计
array([  72.77045209,   95.80097536,   99.48480732,  100.        ])
tot = sum(eig_vals)
var_exp = [(i / tot)*100 for i in sorted(eig_vals, reverse=True)]
cum_var_exp = np.cumsum(var_exp)

trace1 = Bar(
        x=['PC %s' %i for i in range(1,5)],
        y=var_exp,
        showlegend=False)

trace2 = Scatter(
        x=['PC %s' %i for i in range(1,5)], 
        y=cum_var_exp,
        name='cumulative explained variance')

data = Data([trace1, trace2])

layout=Layout(
        yaxis=YAxis(title='Explained variance in percent'),
        title='Explained variance by different principal components')

fig = Figure(data=data, layout=layout)
py.iplot(fig)

《数据处理之PCA》 Paste_Image.png

上图可以显示出:PC1的贡献最大

投影矩阵

投影矩阵就是我们之前计算出来的特征矩阵,选择前两个多的特征向量

cor_mat2 = np.corrcoef(X.T)

eig_vals, eig_vecs = np.linalg.eig(cor_mat2)

print('Eigenvectors \n%s' %eig_vecs)
print('\nEigenvalues \n%s' %eig_vals)

eig_vecs.T.dot(cov_mat).dot(eig_vecs)
Eigenvectors 
[[ 0.52237162 -0.37231836 -0.72101681  0.26199559]
 [-0.26335492 -0.92555649  0.24203288 -0.12413481]
 [ 0.58125401 -0.02109478  0.14089226 -0.80115427]
 [ 0.56561105 -0.06541577  0.6338014   0.52354627]]

Eigenvalues 
[ 2.91081808  0.92122093  0.14735328  0.02060771]





array([[  2.91081808e+00,   0.00000000e+00,   6.66133815e-16,
          7.77156117e-16],
       [  8.32667268e-17,   9.21220931e-01,  -4.16333634e-16,
          1.94289029e-16],
       [  5.82867088e-16,  -4.02455846e-16,   1.47353278e-01,
         -2.08166817e-17],
       [  9.26342336e-16,   1.94505870e-16,  -4.07660017e-17,
          2.06077072e-02]])
# 此时我们的投影矩阵 P = eig_vecs.T
P = eig_vecs.T
matrix_w = P[[0,1]]
print('Matrix W:\n', matrix_w)
Matrix W:
 [[ 0.52237162 -0.26335492  0.58125401  0.56561105]
 [-0.37231836 -0.92555649 -0.02109478 -0.06541577]]

映射到新的2维空间

Y = matrix_w.dot(X_std.T).T
# Y 每一行代表一个数据
traces = []

for name in ('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'):

    trace = Scatter(
        x=Y[y==name,0],
        y=Y[y==name,1],
        mode='markers',
        name=name,
        marker=Marker(
            size=12,
            line=Line(
                color='rgba(217, 217, 217, 0.14)',
                width=0.5),
            opacity=0.8))
    traces.append(trace)


data = Data(traces)
layout = Layout(showlegend=True,
                scene=Scene(xaxis=XAxis(title='PC1'),
                yaxis=YAxis(title='PC2'),))

fig = Figure(data=data, layout=layout)
py.iplot(fig)

《数据处理之PCA》 Paste_Image.png

上面我们自己一步一步的实现了PCA,达到了降维度的目的,我们可以使用scikit-learn中的方法快速的实现:

from sklearn.decomposition import PCA as sklearnPCA
sklearn_pca = sklearnPCA(n_components=2)
Y_sklearn = sklearn_pca.fit_transform(X_std)
traces = []

for name in ('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'):

    trace = Scatter(
        x=Y_sklearn[y==name,0],
        y=Y_sklearn[y==name,1],
        mode='markers',
        name=name,
        marker=Marker(
            size=12,
            line=Line(
                color='rgba(217, 217, 217, 0.14)',
                width=0.5),
            opacity=0.8))
    traces.append(trace)


data = Data(traces)
layout = Layout(xaxis=XAxis(title='PC1', showline=False),
                yaxis=YAxis(title='PC2', showline=False))
fig = Figure(data=data, layout=layout)
py.iplot(fig)

《数据处理之PCA》 Paste_Image.png

总结

最后我们来总结下整个过程:

《数据处理之PCA》

    原文作者:超级个体颛顼
    原文地址: https://www.jianshu.com/p/f96191f40bba
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞