NYIST 36 最长公共子序列(空间优化)

最长公共子序列

时间限制:
3000 ms  |  内存限制:
65535 KB 难度:
3

描述
咱们就不拐弯抹角了,如题,需要你做的就是写一个程序,得出最长公共子序列。

tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence)。其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列。

输入
第一行给出一个整数N(0<N<100)表示待测数据组数

接下来每组数据两行,分别为待测的两组字符串。每个字符串长度不大于1000.

输出
每组测试数据输出一个整数,表示最长公共子序列长度。每组结果占一行。
样例输入
2
asdf
adfsd
123abc
abc123abc
样例输出
3
6
#include <stdio.h>
#include <string.h>
char s1[1001], s2[1001];
int dp[1001], t, old, tmp;
int main(){
    scanf("%d", &t);
    getchar();
    while(t--){
        gets(s1);
        gets(s2);
        memset(dp, 0, sizeof(dp));
        int lenS1=strlen(s1), lenS2=strlen(s2);
        for(int i=0; i<lenS1; i++){
            old=0;
            //若s1[i]==s2[j], dp[i][j] = dp[i-1][j-1]+1
            //否则,dp[i][j] = max(dp[i-1][j], dp[i][j-1])
            //此处进行了空间优化,old 代表 dp[i-1][j-1]
            //dp[j-1] 代表 dp[i][j-1], dp[j] 代表 dp[i-1][j]
            for(int j=0; j<lenS2; j++){
                tmp = dp[j];
                if(s1[i]==s2[j])
                    dp[j] = old+1;
                else
                    if(dp[j-1]>dp[j])dp[j]=dp[j-1];
                old = tmp;
            }
        }
        printf("%d\n", dp[lenS2-1]);
    }
    return 0;
}

点赞