分布式学习(6) ---- 深入kafka生产消费模型

生产者详解

上文中生产者代码如下:

Properties props = new Properties();
	 props.put("bootstrap.servers", "localhost:9092");
	 props.put("acks", "all");
	 props.put("retries", 0);
	 props.put("batch.size", 16384);
	 props.put("linger.ms", 1);
	 props.put("buffer.memory", 33554432);
	 props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
	 props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
	 Producer<String, String> producer = new KafkaProducer<>(props);
	 for(int i = 0; i < 100; i++)
		 producer.send(new ProducerRecord<String, String>("my-topic", Integer.toString(i), Integer.toString(i)));
	 producer.close();
  • 生产者的缓冲空间池保留尚未发送到服务器的消息,后台I/O线程负责将这些消息转换成请求发送到集群。如果使用后不关闭生产者,则会泄露这些资源。
  • public Future<RecordMetadata> send(ProducerRecord<K,V> record,Callback callback)
  • send()方法是异步的,添加消息到缓冲区等待发送,并立即返回。生产者将单个的消息批量在一起发送来提高效率。回调参数可选。send是异步的,并且一旦消息被保存在等待发送的消息缓存中,此方法就立即返回。这样并行发送多条消息而不阻塞去等待每一条消息的响应。发送的结果是一个RecordMetadata,它指定了消息发送的分区,分配的offset和消息的时间戳。
  • ack是判别请求是否为完整的条件(就是是判断是不是成功发送了)。我们指定了“all”将会阻塞消息,这种设置性能最低,但是是最可靠的。
  • retries,如果请求失败,生产者会自动重试,我们指定是0次,如果启用重试,则会有重复消息的可能性。
  • producer(生产者)缓存每个分区未发送消息。缓存的大小是通过 batch.size 配置指定的。值较大的话将会产生更大的批。并需要更多的内存(因为每个“活跃”的分区都有1个缓冲区)。
  • 默认缓冲可立即发送,即遍缓冲空间还没有满,但是,如果你想减少请求的数量,可以设置linger.ms大于0。这将指示生产者发送请求之前等待一段时间,希望更多的消息填补到未满的批中。这类似于TCP的算法,例如上面的代码段,可能100条消息在一个请求发送,因为我们设置了linger(逗留)时间为1毫秒,然后,如果我们没有填满缓冲区,这个设置将增加1毫秒的延迟请求以等待更多的消息。需要注意的是,在高负载下,相近的时间一般也会组成批,即使是 linger.ms=0。在不处于高负载的情况下,如果设置比0大,以少量的延迟代价换取更少的,更有效的请求。
  • buffer.memory 控制生产者可用的缓存总量,如果消息发送速度比其传输到服务器的快,将会耗尽这个缓存空间。当缓存空间耗尽,其他发送调用将被阻塞,阻塞时间的阈值通过max.block.ms设定,之后它将抛出一个TimeoutException。
  • key.serializer和value.serializer示例,将用户提供的key和value对象ProducerRecord转换成字节,你可以使用附带的ByteArraySerializaer或StringSerializer处理简单的string或byte类型。

消费者详解

上文中消费者代码

Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props.put("group.id", "test");
        props.put("enable.auto.commit", "true");
        props.put("auto.commit.interval.ms", "1000");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
        consumer.subscribe(Arrays.asList("test2"));
        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(100);
            for (ConsumerRecord<String, String> record : records)
                System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
        }

  • 偏移量和消费者的位置

kafka为分区中的每条消息保存一个偏移量(offset),这个偏移量是该分区中一条消息的唯一标示符。也表示消费者在分区的位置。例如,一个位置是5的消费者(说明已经消费了0到4的消息),下一个接收消息的偏移量为5的消息。实际上有两个与消费者相关的“位置”概念:

消费者的位置给出了下一条记录的偏移量。它比消费者在该分区中看到的最大偏移量要大一个。 它在每次消费者在调用poll(long)中接收消息时自动增长。

“已提交”的位置是已安全保存的最后偏移量,如果进程失败或重新启动时,消费者将恢复到这个偏移量。消费者可以选择定期自动提交偏移量,也可以选择通过调用commit API来手动的控制(如:commitSync 和 commitAsync)。上述代码就是自动提交偏移量。

这个区别是消费者来控制一条消息什么时候才被认为是已被消费的,控制权在消费者,下面我们进一步更详细地讨论。

  • 消费者组和主题订阅

Kafka的消费者组概念,通过进程池瓜分消费和处理消息的工作。这些进程可以在同一台机器运行,也可分布到多台机器上,增加可扩展性和容错性,相同group.id的消费者将视为同一个消费者组。

分组中的每个消费者通过subscribe API动态的订阅一个topic列表。kafka将已订阅topic的消息发送到每个消费者组中。并通过平衡分区在消费者分组中所有成员之间来达到平均。因此每个分区恰好地分配1个消费者(一个消费者组中)。所有如果一个topic有4个分区,并且一个消费者分组有2个消费者。那么每个消费者消费2个分区。

消费者组的成员是动态维护的:如果一个消费者故障。分配给它的分区将重新分配给同一个分组中其他的消费者。同样的,如果一个新的消费者加入到分组,将从现有消费者中移一个给它。这被称为重新平衡分组,并在下面更详细地讨论。 当新分区添加到订阅的topic时,或者当创建与订阅的正则表达式匹配的新topic时,也将重新平衡。将通过定时刷新自动发现新的分区,并将其分配给分组的成员。

从概念上讲,你可以将消费者分组看作是由多个进程组成的单一逻辑订阅者。作为一个多订阅系统,Kafka支持对于给定topic任何数量的消费者组,而不重复。

这是在消息系统中常见的功能的略微概括。所有进程都将是单个消费者分组的一部分(类似传统消息传递系统中的队列的语义),因此消息传递就像队列一样,在组中平衡。与传统的消息系统不同的是,虽然,你可以有多个这样的组。但每个进程都有自己的消费者组(类似于传统消息系统中pub-sub的语义),因此每个进程都会订阅到该主题的所有消息。

此外,当分组重新分配自动发生时,可以通过ConsumerRebalanceListener通知消费者,这允许他们完成必要的应用程序级逻辑,例如状态清除,手动偏移提交等。有关更多详细信息,请参阅Kafka存储的偏移

它也允许消费者通过使用assign(Collection)手动分配指定分区,如果使用手动指定分配分区,那么动态分区分配和协调消费者组将失效。

  • 发现消费者故障

订阅一组topic后,当调用poll(long)时,消费者将自动加入到组中。只要持续的调用poll,消费者将一直保持可用,并继续从分配的分区中接收消息。此外,消费者向服务器定时发送心跳。 如果消费者崩溃或无法在session.timeout.ms配置的时间内发送心跳,则消费者将被视为死亡,并且其分区将被重新分配。

还有一种可能,消费可能遇到“活锁”的情况,它持续的发送心跳,但是没有处理。为了预防消费者在这种情况下一直持有分区,我们使用max.poll.interval.ms活跃检测机制。 在此基础上,如果你调用的poll的频率大于最大间隔,则客户端将主动地离开组,以便其他消费者接管该分区。 发生这种情况时,你会看到offset提交失败(调用commitSync()引发的CommitFailedException)。这是一种安全机制,保障只有活动成员能够提交offset。所以要留在组中,你必须持续调用poll。

消费者提供两个配置设置来控制poll循环:

  1. max.poll.interval.ms:增大poll的间隔,可以为消费者提供更多的时间去处理返回的消息(调用poll(long)返回的消息,通常返回的消息都是一批)。缺点是此值越大将会延迟组重新平衡。

  2. max.poll.records:此设置限制每次调用poll返回的消息数,这样可以更容易的预测每次poll间隔要处理的最大值。通过调整此值,可以减少poll间隔,减少重新平衡分组的

对于消息处理时间不可预测地的情况,这些选项是不够的。 处理这种情况的推荐方法是将消息处理移到另一个线程中,让消费者继续调用poll。 但是必须注意确保已提交的offset不超过实际位置。另外,你必须禁用自动提交,并只有在线程完成处理后才为记录手动提交偏移量(取决于你)。 还要注意,你需要pause暂停分区,不会从poll接收到新消息,让线程处理完之前返回的消息(如果你的处理能力比拉取消息的慢,那创建新线程将导致你机器内存溢出)。

  • 控制消费的位置

大多数情况下,消费者只是简单的从头到尾的消费消息,周期性的提交位置(自动或手动)。kafka也支持消费者去手动的控制消费的位置,可以消费之前的消息也可以跳过最近的消息。

有几种情况,手动控制消费者的位置可能是有用的。

一种场景是对于时间敏感的消费者处理程序,对足够落后的消费者,直接跳过,从最近的消费开始消费。

另一个使用场景是本地状态存储系统。在这样的系统中,消费者将要在启动时初始化它的位置(无论本地存储是否包含)。同样,如果本地状态已被破坏(假设因为磁盘丢失),则可以通过重新消费所有数据并重新创建状态(假设kafka保留了足够的历史)在新的机器上重新创建。

kafka使用seek(TopicPartition, long)指定新的消费位置。用于查找服务器保留的最早和最新的offset的特殊的方法也可用(seekToBeginning(Collection) 和 seekToEnd(Collection))。

  • 消费者流量控制

如果消费者分配了多个分区,并同时消费所有的分区,这些分区具有相同的优先级。在一些情况下,消费者需要首先消费一些指定的分区,当指定的分区有少量或者已经没有可消费的数据时,则开始消费其他分区。

例如流处理,当处理器从2个topic获取消息并把这两个topic的消息合并,当其中一个topic长时间落后另一个,则暂停消费,以便落后的赶上来。

kafka支持动态控制消费流量,分别在future的poll(long)中使用pause(Collection) 和 resume(Collection) 来暂停消费指定分配的分区,重新开始消费指定暂停的分区。

本文从 kafka中文教程 – OrcHome 总结而来。

    原文作者:KKys
    原文地址: https://zhuanlan.zhihu.com/p/25227580
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞