当今主流的卷积神经网络框架

  • LeNet (20世纪90年代)最早最出名的神经网络之一。
  • AlexNet(2012 – 2012年,Alex Krizhevsky(和其他人)发布了 AlexNet,它是提升了深度和广度版本的 LeNet,并在2012年以巨大优势赢得了 ImageNet 大规模视觉识别挑战赛(ILSVRC)。这是基于之前方法的重大突破,目前 CNN 的广泛应用都要归功于 AlexNet。
  • ZF Net(2013 – 2013年 ILSVRC 获奖者来自 Matthew Zeiler 和 Rob Fergus 的卷积网络。它被称为 ZFNet(Zeiler 和 Fergus Net 的简称)。它在 AlexNet 的基础上通过调整网络框架超参数对其进行了改进。
  • GoogLeNet2014 – 2014年 ILSVRC 获奖者是 Google 的 Szegedy 等人的卷积网络。其主要贡献是开发了一个初始模块,该模块大大减少了网络中的参数数量(4M,而 AlexNet 有60M)。
  • VGGNet2014 – 2014年 ILSVRC 亚军是名为 VGGNet 的网络。其主要贡献在于证明了网络深度(层数)是影响性能的关键因素。
  • ResNets2015 – 何凯明(和其他人)开发的残差网络是2015年 ILSVRC 的冠军。ResNets 是迄今为止最先进的卷积神经网络模型,并且是大家在实践中使用卷积神经网络的默认选择(截至2016年5月)。
  • DenseNet20168月) – 最近由黄高等人发表,密集连接卷积网络的每一层都以前馈方式直接连接到其他层。 DenseNet 已经在五项竞争激烈的对象识别基准测试任务中证明自己比之前最先进的框架有了显着的改进。具体实现请参考这个网址
    原文作者:神经网络
    原文地址: https://www.cnblogs.com/dylancao/p/9104761.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞