之前通过CNN进行的MNIST训练识别成功率已经很高了,不过每次运行都需要消耗很多的时间。在实际使用的时候,每次都要选经过训练后在进行识别那就太不方便了。
所以我们学习一下如何将训练习得的参数保存起来,然后在需要用的时候直接使用这些参数进行快速的识别。
本章节代码来自《Tensorflow 实战Google深度学习框架》5.5 TensorFlow 最佳实践样例程序 针对书中的代码做了一点点的调整。
mnist_inference.py:
#coding=utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 OUTPUT_NODE = 10 LAYER1_NODE = 500 def get_weight_variable(shape, regularizer): weights = tf.get_variable("weights", shape, initializer = tf.truncated_normal_initializer(stddev=0.1)) if regularizer != None: tf.add_to_collection('losses', regularizer(weights)) return weights def inference(input_tensor, regularizer): with tf.variable_scope('layer1'): weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer) biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0)) layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) with tf.variable_scope('layer2'): weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer) biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0)) layer2 = tf.matmul(layer1, weights) + biases return layer2
这里是向前传播的方法文件。这个方法在训练和测试的过程都需要用到,将它抽离出来既能使用起来更加方便,也能保证训练和测试时使用的方法保持一致。
共享变量 tf.variable_scope & get_variable 方法:
详细的使用方法和工作原理参见教程:共享变量
get_variable
weights = tf.get_variable("weights", shape, initializer = tf.truncated_normal_initializer(stddev=0.1))
源代码第十行使用get_variable函数获取变量。
在训练网络是会创建这些变量;
在测试时会通过训练时保存的模型加载这些变量的值。
mnist_train.py:
#coding=utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import mnist_inference BATCH_SIZE = 100 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.99 REGULARAZTION_RATE = 0.0001 TRAINING_STEPS = 30000 MOVING_AVERAGE_DECAY = 0.99 def train(mnist): x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name="x-input") y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name="y-input") regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE) y = mnist_inference.inference(x, regularizer) global_step = tf.Variable(0, trainable=False) variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables())
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1)) cross_entropy_mean = tf.reduce_mean(cross_entropy) loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses')) learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) with tf.control_dependencies([train_step, variables_averages_op]): train_op = tf.no_op(name='train') saver = tf.train.Saver() with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) for i in range(TRAINING_STEPS): xs, ys = mnist.train.next_batch(BATCH_SIZE) _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys}) if i % 1000 == 0: print("After %d training step(s), loss on training batch is %g." % (step, loss_value)) saver.save(sess, "./mnist_variables/trained_variables.ckpt",global_step=global_step) def main(argv=None): mnist = input_data.read_data_sets('MNIST_data', one_hot=True) train(mnist) if __name__ == '__main__': tf.app.run()
使用正则函数防止过拟合:
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
第25行和第29行代码:
global_step = tf.Variable(0, trainable=False)
。。。。。。。
variables_averages_op = variable_averages.apply(tf.trainable_variables())
tf.trinable_variables()不会获取到global_step 因为trainable设置为了False。
如果tf.trainable_variables() 换成 tf.all_variables()就能获取到global_step了。
mnist_eval.py:
#coding=utf-8 import time import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import mnist_inference import mnist_train EVAL_INTERVAL_SECS = 10 def evaluate(mnist): with tf.Graph().as_default() as g: x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name="x-input") y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name="y-input") validate_feed = {x:mnist.test.images,y_:mnist.test.labels} y = mnist_inference.inference(x, None) correct_prediction = tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) variable_averages = tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) while True: with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state("./mnist_variables/") if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] accuracy_score = sess.run(accuracy, feed_dict=validate_feed) print("After %s training step(s), validation accuracy = %g " % (global_step, accuracy_score)) else: print('No checkpoint file found') return time.sleep(EVAL_INTERVAL_SECS) def main(argv=None): mnist = input_data.read_data_sets('MNIST_data', one_hot=True) evaluate(mnist) if __name__ == '__main__': tf.app.run()
(未完待续。。。。)