安装
(1)安装包安装:pip install tensorflow==1.14 -i https://pypi.douban.com/simple
(2)源码编译安装:https://tensorflow.google.cn/install/source
Install bazel-0.25.2
# wget https://github.com/bazelbuild/bazel/releases/download/0.25.2/bazel-0.25.2-linux-x86_64
# chmod u+x bazel-0.25.2-linux-x86_64
# ln -s /path/bazel-0.25.2-linux-x86_64 /usr/bin/bazel
# bazel version
Build label: 0.25.2
Install tensorflow-1.14.0
# git clone https://github.com/tensorflow/tensorflow.git
# cd tensorflow
# git checkout v1.14.0
# ./configure # /usr/bin/python3, others are default
# bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package
# ./bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
# mv /tmp/tensorflow_pkg/tensorflow-1.14.0-cp36-cp36m-linux_x86_64.whl ./
# python3 -m pip install ./tensorflow-1.14.0-cp36-cp36m-linux_x86_64.whl
install tensorflow-1.14.0 with MKL&Patch
# git clone https://github.com/tensorflow/tensorflow.git
# cd tensorflow/
# git checkout v1.14.0
# patch -p0 < /path/tf-mkl.patch
# ./configure # /usr/bin/python3, others are default
# bazel build --config=mkl --config=opt //tensorflow/tools/pip_package:build_pip_package
# ./bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
# mv /tmp/tensorflow_pkg/tensorflow-1.14.0-cp36-cp36m-linux_x86_64.whl ./
# python3 -m pip install ./tensorflow-1.14.0-cp36-cp36m-linux_x86_64.whl
# python3 -m pip list
tensorboard (1.14.0)
tensorflow (1.14.0)
tensorflow-estimator (1.14.0)
使用
模型优化
(1)查看 saved_model 模型的输入和输出
# bazel build tensorflow/python/tools:saved_model_cli
# saved_model_cli show --dir detection/ --all
或者
# python3 /usr/local/lib/python3.6/site-packages/tensorflow/python/tools/saved_model_cli.py show --dir detection/ --all
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:
signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['image'] tensor_info:
dtype: DT_UINT8
shape: (1, -1, -1, 3)
name: image:0
inputs['true_image_shape'] tensor_info:
dtype: DT_INT32
shape: (1, 3)
name: true_image_shape:0
The given SavedModel SignatureDef contains the following output(s):
outputs['detection_boxes'] tensor_info:
dtype: DT_FLOAT
shape: (1, -1, 4)
name: ChangeCoordToOriginalImage/stack:0
outputs['detection_classes'] tensor_info:
dtype: DT_INT32
shape: (1, -1)
name: add:0
outputs['detection_keypoints'] tensor_info:
dtype: DT_FLOAT
shape: (1, -1, 4, 2)
name: TextKeypointPostProcess/Reshape_2:0
outputs['detection_scores'] tensor_info:
dtype: DT_FLOAT
shape: (1, -1)
name: strided_slice_3:0
outputs['num_detections'] tensor_info:
dtype: DT_INT32
shape: (1)
name: BatchMultiClassNonMaxSuppression/stack_8:0
Method name is: tensorflow/serving/predict
(2)将 tf 的 saved_model 保存成 frozen_model
# bazel build tensorflow/python/tools:freeze_graph
# freeze_graph --input_saved_model_dir detection/ --output_graph detection_frozen_model.pb --output_node_names ChangeCoordToOriginalImage/stack,add,TextKeypointPostProcess/Reshape_2,strided_slice_3,BatchMultiClassNonMaxSuppression/stack_8
或者
# python3 /usr/local/lib/python3.6/site-packages/tensorflow/python/tools/freeze_graph.py --input_saved_model_dir detection/ --output_graph detection_frozen_model.pb --output_node_names ChangeCoordToOriginalImage/stack,add,TextKeypointPostProcess/Reshape_2,strided_slice_3,BatchMultiClassNonMaxSuppression/stack_8
(3)将 frozen_model 通过优化得到 optimized_model
# bazel build tensorflow/python/tools:optimize_for_inference // ouput: bazel-bin/tensorflow/python/tools/optimize_for_inference
# optimize_for_inference --input detection_frozen_model.pb --output detection_optimized_model.pb --input_names image,true_image_shape --output_names ChangeCoordToOriginalImage/stack,add,TextKeypointPostProcess/Reshape_2,strided_slice_3,BatchMultiClassNonMaxSuppression/stack_8 --frozen_graph true --placeholder_type_enum 4,3,1,3,1,1,3
或者
# python3 /usr/local/lib/python3.6/site-packages/tensorflow/python/tools/optimize_for_inference.py --input detection_frozen_model.pb --output detection_optimized_model.pb --input_names image,true_image_shape --output_names ChangeCoordToOriginalImage/stack,add,TextKeypointPostProcess/Reshape_2,strided_slice_3,BatchMultiClassNonMaxSuppression/stack_8 --frozen_graph true --placeholder_type_enum 4,3,1,3,1,1,3
其中 placeholder_type_enum 详情如下:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/types.proto
(4)将 pb 模型输出成 TensorFlow 的可视化 graph
# bazel build tensorflow/python/tools:import_pb_to_tensorboard
# import_pb_to_tensorboard --model_dir ./recognition_frozen_model.pb --log_dir ./recognition_log
或者
# python3 /usr/local/lib/python3.6/site-packages/tensorflow/python/tools/import_pb_to_tensorboard.py --model_dir ./recognition_frozen_model.pb --log_dir ./recognition_frozen_model.graph
# nohup tensorboard --logdir=./recognition_frozen_model.graph --port=6006 2>&1 &
可视化工具 TensorBoard 用法: https://blog.csdn.net/gg_18826075157/article/details/78440766
(5)量化、固化、优化 pb 模型
官方手册:https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/graph_transforms
intel 量化手册:https://github.com/IntelAI/tools/tree/master/tensorflow_quantization
# bazel build tensorflow/tools/graph_transforms:transform_graph
# bazel-bin/tensorflow/tools/graph_transforms/transform_graph --in_graph="./detection_frozen_model.pb" --out_graph="./detection_transformed_model.pb" --inputs="image,true_image_shape" --outputs="ChangeCoordToOriginalImage/stack,add,TextKeypointPostProcess/Reshape_2,strided_slice_3,BatchMultiClassNonMaxSuppression/stack_8" --transforms='
add_default_attributes
strip_unused_nodes()
remove_nodes(op=Identity, op=CheckNumerics)
fold_constants(ignore_errors=true)
fold_batch_norms
fold_old_batch_norms
quantize_weights'
PS:
模型优化 refer:https://blog.csdn.net/qq_14845119/article/details/78846372
模型量化:https://www.jianshu.com/p/d2637646cda1