我试图使用张量流的条件,我收到错误:
ValueError: Shapes (1,) and () are not compatible
下面是我使用的抛出错误的代码.
它说错误是有条件的
import tensorflow as tf
import numpy as np
X = tf.constant([1, 0])
Y = tf.constant([0, 1])
BOTH = tf.constant([1, 1])
WORKING = tf.constant(1)
def create_mult_func(tf, amount, list):
def f1():
return tf.scalar_mul(amount, list)
return f1
def create_no_op_func(tensor):
def f1():
return tensor
return f1
def stretch(tf, points, dim, amount):
"""points is a 2 by ??? tensor, dim is a 1 by 2 tensor, amount is tensor scalor"""
x_list, y_list = tf.split(0, 2, points)
x_stretch, y_stretch = tf.split(1, 2, dim)
is_stretch_X = tf.equal(x_stretch, WORKING, name="is_stretch_x")
is_stretch_Y = tf.equal(y_stretch, WORKING, name="is_stretch_Y")
x_list_stretched = tf.cond(is_stretch_X,
create_mult_func(tf, amount, x_list), create_no_op_func(x_list))
y_list_stretched = tf.cond(is_stretch_Y,
create_mult_func(tf, amount, y_list), create_no_op_func(y_list))
return tf.concat(1, [x_list_stretched, y_list_stretched])
example_points = np.array([[1, 1], [2, 2], [3, 3]], dtype=np.float32)
example_point_list = tf.placeholder(tf.float32)
result = stretch(tf, example_point_list, X, 1)
sess = tf.Session()
with tf.Session() as sess:
result = sess.run(result, feed_dict={example_point_list: example_points})
print(result)
堆栈跟踪:
File "/path/test2.py", line 36, in <module>
result = stretch(tf, example_point_list, X, 1)
File "/path/test2.py", line 28, in stretch
create_mult_func(tf, amount, x_list), create_no_op_func(x_list))
File "/path/tensorflow/python/ops/control_flow_ops.py", line 1142, in cond
p_2, p_1 = switch(pred, pred)
File "/path/tensorflow/python/ops/control_flow_ops.py", line 203, in switch
return gen_control_flow_ops._switch(data, pred, name=name)
File "/path/tensorflow/python/ops/gen_control_flow_ops.py", line 297, in _switch
return _op_def_lib.apply_op("Switch", data=data, pred=pred, name=name)
File "/path/tensorflow/python/ops/op_def_library.py", line 655, in apply_op
op_def=op_def)
File "/path/tensorflow/python/framework/ops.py", line 2156, in create_op
set_shapes_for_outputs(ret)
File "/path/tensorflow/python/framework/ops.py", line 1612, in set_shapes_for_outputs
shapes = shape_func(op)
File "/path/tensorflow/python/ops/control_flow_ops.py", line 2032, in _SwitchShape
unused_pred_shape = op.inputs[1].get_shape().merge_with(tensor_shape.scalar())
File "/path/tensorflow/python/framework/tensor_shape.py", line 554, in merge_with
(self, other))
ValueError: Shapes (1,) and () are not compatible
我已经尝试将WORKING更改为数组而不是标量.
我相信问题是tf.equal返回一个int32而不是它应该根据文档返回的bool
最佳答案 问题在于tf.cond的第一个参数.从文档
here,关于tf.cond的第一个参数的类型:
pred: A scalar determining whether to return the result of fn1 or fn2.
请注意,它必须是标量.你正在使用比较张量和张量的结果,它给你一个(1,)张量,而不是标量.您可以使用tf.reshape
运算符将其转换为标量,如下所示:
t = tf.equal(x_stretch, WORKING, name="is_stretch_x")
x_list_stretched = tf.cond(tf.reshape(t, []),
create_mult_func(tf, amount, x_list), create_no_op_func(x_list))
完整的工作程序:
import tensorflow as tf
import numpy as np
X = tf.constant([1, 0])
Y = tf.constant([0, 1])
BOTH = tf.constant([1, 1])
WORKING = tf.constant(1)
def create_mult_func(tf, amount, list):
def f1():
return tf.scalar_mul(amount, list)
return f1
def create_no_op_func(tensor):
def f1():
return tensor
return f1
def stretch(tf, points, dim, amount):
"""points is a 2 by ??? tensor, dim is a 1 by 2 tensor, amount is tensor scalor"""
x_list, y_list = tf.split(0, 2, points)
x_stretch, y_stretch = tf.split(0, 2, dim)
is_stretch_X = tf.equal(x_stretch, WORKING, name="is_stretch_x")
is_stretch_Y = tf.equal(y_stretch, WORKING, name="is_stretch_Y")
x_list_stretched = tf.cond(tf.reshape(is_stretch_X, []),
create_mult_func(tf, amount, x_list), create_no_op_func(x_list))
y_list_stretched = tf.cond(tf.reshape(is_stretch_Y, []),
create_mult_func(tf, amount, y_list), create_no_op_func(y_list))
return tf.pack([x_list_stretched, y_list_stretched])
example_points = np.array([[1, 1], [2, 2]], dtype=np.float32)
example_point_list = tf.placeholder(tf.float32)
result = stretch(tf, example_point_list, X, 1)
sess = tf.Session()
with tf.Session() as sess:
result = sess.run(result, feed_dict={example_point_list: example_points})
print(result)