我已经尝试实现堆栈溢出
Answered Solution.但它不起作用.
测试用例 :
int val[] = {10,40,30,50};
int wt[] = {5,4,6,3};
W = 10;
OUTPUT KNAPSACK DP MATRIX:
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 5 5 5 5 5 5
0 0 0 0 4 5 5 5 5 9 9
0 0 0 0 4 5 6 6 6 9 10
0 0 0 3 4 5 6 7 8 9 10
Wt that can be reached is : 10
sum of wt of selected items : 11 (which is wrong should be only 10)
selected -> 6 (3rd item) and 5 (1st item) [which is wrong]
int knapSack(int W, int wt[], int val[], int n)
{
int i, w;
int K[n+1][W+1];
int picks[n+1][W+1] = {0};
// Build table K[][] in bottom up manner
for (i = 0; i <= n; i++)
{
for (w = 0; w <= W; w++)
{
if (i==0 || w==0)
K[i][w] = 0;
else if (wt[i-1] <= w){
//val[i-1 ] is value of curr i
K[i][w] = max(wt[i-1] + K[i-1][w-wt[i-1]], K[i-1][w]);
if (val[i-1]+K[i-1][w-wt[i-1]] > K[i-1][w]){
picks[i][w]=1;
}
else
picks[i][w]=-1;
}
else{
// wt of individual is > limit
picks[i][w] = -1;
K[i][w] = K[i-1][w];
}
}
}
}
为了打印拾取的元素,我正在使用
while (w > 0 && i > 0 ){
if ((K[i][w] - K[i-1][w-wt[i-1]]) == wt[i-1]){
weight += wt[i-1];
i = i - 1;
w = w - wt[i-1];
}
else{
i = i - 1;
}
}
最佳答案
w = w - wt[i-1]
实际上是
w = w - wt[i-2]
因为i = i – 1是在它之前计算的.
下面的代码现在可以使用.
weight += wt[i-1];
i = i - 1;
w = w - wt[i] ;