The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def EStep(self): P = np.zeros((self.M, self.N)) for i in range(0, self.M): diff = self.X - np.tile(self.TY[i, :], (self.N, 1)) diff = np.multiply(diff, diff) P[i, :] = P[i, :] + np.sum(diff, axis=1) c = (2 * np.pi * self.sigma2) ** (self.D / 2) c = c * self.w / (1 - self.w) c = c * self.M / self.N P = np.exp(-P / (2 * self.sigma2)) den = np.sum(P, axis=0) den = np.tile(den, (self.M, 1)) den[den==0] = np.finfo(float).eps self.P = np.divide(P, den) self.Pt1 = np.sum(self.P, axis=0) self.P1 = np.sum(self.P, axis=1) self.Np = np.sum(self.P1)
Example 2
def reproject_one_shape( self, shape, bbox, window, nfids): '''Re-project a shape to the original plan. ''' shape_re = shape std_w, std_h = window x = bbox[0] y = bbox[1] w = bbox[2] h = bbox[3] center_x = x + np.divide(w, 2) center_y = y + np.divide(h, 2) X = shape[0:nfids] Y = shape[nfids:] # reprojecting ... X = X * (std_w / 2.) + center_x Y = Y * (std_h / 2.) + center_y shape_re = np.concatenate((X,Y)) return shape_re
Example 3
def normalise_images(X): ''' Helper for making the images zero mean and unit standard deviation i.e. `white` ''' X_white = np.zeros(X.shape, dtype=np.float32) for ii in range(X.shape[0]): Xc = X[ii,:,:,:] mc = Xc.mean() sc = Xc.std() Xc_white = np.divide((Xc - mc), sc) X_white[ii,:,:,:] = Xc_white return X_white.astype(np.float32)
Example 4
def IAM(self): """ Computation of Ideal Amplitude Mask. As appears in : H. Erdogan, J. R. Hershey, S. Watanabe, and J. Le Roux, "Phase-sensitive and recognition-boosted speech separation using deep recurrent neural networks," in ICASSP 2015, Brisbane, April, 2015. Args: sTarget: (2D ndarray) Magnitude Spectrogram of the target component nResidual: (2D ndarray) Magnitude Spectrogram of the residual component (In this case the observed mixture should be placed) Returns: mask: (2D ndarray) Array that contains time frequency gain values """ print('Ideal Amplitude Mask') self._mask = np.divide(self._sTarget, (self._eps + self._nResidual))
Example 5
def ExpM(self): """ Approximate a signal via element-wise exponentiation. As appears in : S.I. Mimilakis, K. Drossos, T. Virtanen, and G. Schuller, "Deep Neural Networks for Dynamic Range Compression in Mastering Applications," in proc. of the 140th Audio Engineering Society Convention, Paris, 2016. Args: sTarget: (2D ndarray) Magnitude Spectrogram of the target component nResidual: (2D ndarray) Magnitude Spectrogram of the residual component Returns: mask: (2D ndarray) Array that contains time frequency gain values """ print('Exponential mask') self._mask = np.divide(np.log(self._sTarget.clip(self._eps, np.inf)**self._alpha),\ np.log(self._nResidual.clip(self._eps, np.inf)**self._alpha))
Example 6
def IBM(self): """ Computation of Ideal Binary Mask. Args: sTarget: (2D ndarray) Magnitude Spectrogram of the target component nResidual: (2D ndarray) Magnitude Spectrogram of the residual component Returns: mask: (2D ndarray) Array that contains time frequency gain values """ print('Ideal Binary Mask') theta = 0.5 mask = np.divide(self._sTarget ** self._alpha, (self._eps + self._nResidual ** self._alpha)) bg = np.where(mask >= theta) sm = np.where(mask < theta) mask[bg[0],bg[1]] = 1. mask[sm[0], sm[1]] = 0. self._mask = mask
Example 7
def UBBM(self): """ Computation of Upper Bound Binary Mask. As appears in : - J.J. Burred, "From Sparse Models to Timbre Learning: New Methods for Musical Source Separation", PhD Thesis, TU Berlin, 2009. Args: sTarget: (2D ndarray) Magnitude Spectrogram of the target component nResidual: (2D ndarray) Magnitude Spectrogram of the residual component (Should not contain target source!) Returns: mask: (2D ndarray) Array that contains time frequency gain values """ print('Upper Bound Binary Mask') mask = 20. * np.log(self._eps + np.divide((self._eps + (self._sTarget ** self._alpha)), ((self._eps + (self._nResidual ** self._alpha))))) bg = np.where(mask >= 0) sm = np.where(mask < 0) mask[bg[0],bg[1]] = 1. mask[sm[0], sm[1]] = 0. self._mask = mask
Example 8
def alphaHarmonizableProcess(self): """ Computation of Wiener like mask using fractional power spectrograms. As appears in : A. Liutkus, R. Badeau, "Generalized Wiener filtering with fractional power spectrograms", 40th International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2015, Brisbane, Australia. Args: sTarget: (2D ndarray) Magnitude Spectrogram of the target component nResidual: (2D ndarray) Magnitude Spectrogram of the residual component or a list of 2D ndarrays which will be added together Returns: mask: (2D ndarray) Array that contains time frequency gain values """ print('Harmonizable Process with alpha:', str(self._alpha)) localsTarget = self._sTarget ** self._alpha numElements = len(self._nResidual) if numElements > 1: localnResidual = self._nResidual[0] ** self._alpha + localsTarget for indx in range(1, numElements): localnResidual += self._nResidual[indx] ** self._alpha else : localnResidual = self._nResidual[0] ** self._alpha + localsTarget self._mask = np.divide((localsTarget + self._eps), (self._eps + localnResidual))
Example 9
def phaseSensitive(self): """ Computation of Phase Sensitive Mask. As appears in : H Erdogan, John R. Hershey, Shinji Watanabe, and Jonathan Le Roux, "Phase-sensitive and recognition-boosted speech separation using deep recurrent neural networks," in ICASSP 2015, Brisbane, April, 2015. Args: mTarget: (2D ndarray) Magnitude Spectrogram of the target component pTarget: (2D ndarray) Phase Spectrogram of the output component mY: (2D ndarray) Magnitude Spectrogram of the residual component pY: (2D ndarray) Phase Spectrogram of the residual component Returns: mask: (2D ndarray) Array that contains time frequency gain values """ print('Phase Sensitive Masking.') # Compute Phase Difference Theta = (self._pTarget - self._pY) self._mask = 2./ (1. + np.exp(-np.multiply(np.divide(self._sTarget, self._eps + self._nResidual), np.cos(Theta)))) - 1.
Example 10
def load_augment(fname, w, h, aug_params=no_augmentation_params, transform=None, sigma=0.0, color_vec=None): """Load augmented image with output shape (w, h). Default arguments return non augmented image of shape (w, h). To apply a fixed transform (color augmentation) specify transform (color_vec). To generate a random augmentation specify aug_params and sigma. """ img = load_image(fname) img = perturb(img, augmentation_params=aug_params, target_shape=(w, h)) #if transform is None: # img = perturb(img, augmentation_params=aug_params, target_shape=(w, h)) #else: # img = perturb_fixed(img, tform_augment=transform, target_shape=(w, h)) #randString = str(np.random.normal(0,1,1)) #im = Image.fromarray(img.transpose(1,2,0).astype('uint8')) #figName = fname.split("/")[-1] #im.save("imgs/"+figName+randString+".jpg") np.subtract(img, MEAN[:, np.newaxis, np.newaxis], out=img) #np.divide(img, STD[:, np.newaxis, np.newaxis], out=img) #img = augment_color(img, sigma=sigma, color_vec=color_vec) return img
Example 11
def setUp(self): # Base data definition. x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = masked_array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) self.err_status = np.geterr() np.seterr(divide='ignore', invalid='ignore')
Example 12
def __ifloordiv__(self, other): """ Floor divide self by other in-place. """ other_data = getdata(other) dom_mask = _DomainSafeDivide().__call__(self._data, other_data) other_mask = getmask(other) new_mask = mask_or(other_mask, dom_mask) # The following 3 lines control the domain filling if dom_mask.any(): (_, fval) = ufunc_fills[np.floor_divide] other_data = np.where(dom_mask, fval, other_data) self._mask |= new_mask self._data.__ifloordiv__(np.where(self._mask, self.dtype.type(1), other_data)) return self
Example 13
def __itruediv__(self, other): """ True divide self by other in-place. """ other_data = getdata(other) dom_mask = _DomainSafeDivide().__call__(self._data, other_data) other_mask = getmask(other) new_mask = mask_or(other_mask, dom_mask) # The following 3 lines control the domain filling if dom_mask.any(): (_, fval) = ufunc_fills[np.true_divide] other_data = np.where(dom_mask, fval, other_data) self._mask |= new_mask self._data.__itruediv__(np.where(self._mask, self.dtype.type(1), other_data)) return self
Example 14
def __ipow__(self, other): """ Raise self to the power other, in place. """ other_data = getdata(other) other_mask = getmask(other) with np.errstate(divide='ignore', invalid='ignore'): self._data.__ipow__(np.where(self._mask, self.dtype.type(1), other_data)) invalid = np.logical_not(np.isfinite(self._data)) if invalid.any(): if self._mask is not nomask: self._mask |= invalid else: self._mask = invalid np.copyto(self._data, self.fill_value, where=invalid) new_mask = mask_or(other_mask, invalid) self._mask = mask_or(self._mask, new_mask) return self
Example 15
def update_kl_loss(p, lambdas, T, Cs): """ Updates C according to the KL Loss kernel with the S Ts couplings calculated at each iteration Parameters ---------- p : ndarray, shape (N,) weights in the targeted barycenter lambdas : list of the S spaces' weights T : list of S np.ndarray(ns,N) the S Ts couplings calculated at each iteration Cs : list of S ndarray, shape(ns,ns) Metric cost matrices Returns ---------- C : ndarray, shape (ns,ns) updated C matrix """ tmpsum = sum([lambdas[s] * np.dot(T[s].T, Cs[s]).dot(T[s]) for s in range(len(T))]) ppt = np.outer(p, p) return np.exp(np.divide(tmpsum, ppt))
Example 16
def IBM(self): """ Computation of Ideal Binary Mask. Args: sTarget: (2D ndarray) Magnitude Spectrogram of the target component nResidual: (2D ndarray) Magnitude Spectrogram of the residual component Returns: mask: (2D ndarray) Array that contains time frequency gain values """ print('Ideal Binary Mask') theta = 0.5 mask = np.divide(self._sTarget ** self._alpha, (self._eps + self._nResidual ** self._alpha)) bg = np.where(mask >= theta) sm = np.where(mask < theta) mask[bg[0],bg[1]] = 1. mask[sm[0], sm[1]] = 0. self._mask = mask
Example 17
def UBBM(self): """ Computation of Upper Bound Binary Mask. As appears in : - J.J. Burred, "From Sparse Models to Timbre Learning: New Methods for Musical Source Separation", PhD Thesis, TU Berlin, 2009. Args: sTarget: (2D ndarray) Magnitude Spectrogram of the target component nResidual: (2D ndarray) Magnitude Spectrogram of the residual component (Should not contain target source!) Returns: mask: (2D ndarray) Array that contains time frequency gain values """ print('Upper Bound Binary Mask') mask = 20. * np.log(self._eps + np.divide((self._eps + (self._sTarget ** self._alpha)), ((self._eps + (self._nResidual ** self._alpha))))) bg = np.where(mask >= 0) sm = np.where(mask < 0) mask[bg[0],bg[1]] = 1. mask[sm[0], sm[1]] = 0. self._mask = mask
Example 18
def Wiener(self): """ Computation of Wiener-like Mask. As appears in : H Erdogan, John R. Hershey, Shinji Watanabe, and Jonathan Le Roux, "Phase-sensitive and recognition-boosted speech separation using deep recurrent neural networks," in ICASSP 2015, Brisbane, April, 2015. Args: sTarget: (2D ndarray) Magnitude Spectrogram of the target component nResidual: (2D ndarray) Magnitude Spectrogram of the residual component Returns: mask: (2D ndarray) Array that contains time frequency gain values """ print('Wiener-like Mask') localsTarget = self._sTarget ** 2. numElements = len(self._nResidual) if numElements > 1: localnResidual = self._nResidual[0] ** 2. + localsTarget for indx in range(1, numElements): localnResidual += self._nResidual[indx] ** 2. else : localnResidual = self._nResidual[0] ** 2. + localsTarget self._mask = np.divide((localsTarget + self._eps), (self._eps + localnResidual))
Example 19
def alphaHarmonizableProcess(self): """ Computation of alpha harmonizable Wiener like mask, as appears in : A. Liutkus, R. Badeau, "Generalized Wiener filtering with fractional power spectrograms", 40th International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2015, Brisbane, Australia. Args: sTarget: (2D ndarray) Magnitude Spectrogram of the target component nResidual: (2D ndarray) Magnitude Spectrogram of the residual component or a list of 2D ndarrays which will be summed Returns: mask: (2D ndarray) Array that contains time frequency gain values """ print('Harmonizable Process with alpha:', str(self._alpha)) localsTarget = self._sTarget ** self._alpha numElements = len(self._nResidual) if numElements > 1: localnResidual = self._nResidual[0] ** self._alpha + localsTarget for indx in range(1, numElements): localnResidual += self._nResidual[indx] ** self._alpha else : localnResidual = self._nResidual[0] ** self._alpha + localsTarget self._mask = np.divide((localsTarget + self._eps), (self._eps + localnResidual))
Example 20
def contributions(in_length, out_length, scale, kernel, k_width): if scale < 1: h = lambda x: scale * kernel(scale * x) kernel_width = 1.0 * k_width / scale else: h = kernel kernel_width = k_width x = np.arange(1, out_length+1).astype(np.float64) u = x / scale + 0.5 * (1 - 1 / scale) left = np.floor(u - kernel_width / 2) P = int(ceil(kernel_width)) + 2 ind = np.expand_dims(left, axis=1) + np.arange(P) - 1 # -1 because indexing from 0 indices = ind.astype(np.int32) weights = h(np.expand_dims(u, axis=1) - indices - 1) # -1 because indexing from 0 weights = np.divide(weights, np.expand_dims(np.sum(weights, axis=1), axis=1)) aux = np.concatenate((np.arange(in_length), np.arange(in_length - 1, -1, step=-1))).astype(np.int32) indices = aux[np.mod(indices, aux.size)] ind2store = np.nonzero(np.any(weights, axis=0)) weights = weights[:, ind2store] indices = indices[:, ind2store] return weights, indices
Example 21
def generate_signals(self): for i in range(self.Trials): x = self.True_position[i, 0] y = self.True_position[i, 1] z = self.True_position[i, 2] mic_data = [numpy.vstack((numpy.zeros((int(round(self.Padding[i, j])), 1)), self.wave)) for j in range(self.N)] lenvec = numpy.array([len(mic) for mic in mic_data]) m = max(lenvec) c = numpy.array([m - mic_len for mic_len in lenvec]) mic_data = [numpy.vstack((current_mic, numpy.zeros((c[idx], 1)))) for idx, current_mic in enumerate(mic_data)] mic_data = [numpy.divide(current_mic, self.Distances[i, idx]) for idx, current_mic in enumerate(mic_data)] multitrack = numpy.array(mic_data) print 'prepared all data.' x, y, z = self.locate(self.Sen_position, multitrack) self.Est_position[i, 0] = x self.Est_position[i, 1] = y self.Est_position[i, 2] = z
Example 22
def _kl_hr(pha, amp, nbins): nPha, npts, nAmp = *pha.shape, amp.shape[0] step = 2*np.pi/nbins vecbin = binarize(-np.pi, np.pi+step, step, step) if len(vecbin) > nbins: vecbin = vecbin[0:-1] abin = np.zeros((nAmp, nPha, nbins)) for k, i in enumerate(vecbin): # Find where phase take vecbin values : pL, pC = np.where((pha >= i[0]) & (pha < i[1])) # Matrix to do amp x binMat : binMat = np.zeros((npts, nPha)) binMat[pC, pL] = 1 meanMat = np.matlib.repmat(binMat.sum(axis=0), nAmp, 1) meanMat[meanMat == 0] = 1 # Multiply matrix : abin[:, :, k] = np.divide(np.dot(amp, binMat), meanMat) abinsum = np.array([abin.sum(axis=2) for k in range(nbins)]) return abin, abinsum
Example 23
def scoring(predictions_list,answer_list): """ ?????? ????????????????????????????????????????????????????????????????? (1) ???????????????????????????????????????????????????????????????(????????????????????) (2) ?????????(??????)????????????????????????????????????????????? (3) ?????????(??????)???????????????????????????????????????????? (4) ????????(?????)????????????????????????????????????????????????? (5) ?[???????(2) ]-[????????(3)]-[??????(4)]?????????? (6) ???????????????????????????????????? :param predictions_list: :param answer_list: :return: """ pred,answer,missing=generate_scoring_array(predictions_list,answer_list) # print(pred) # print(answer) margin1=expect_margin(pred,answer) #??????????? margin2= expect_margin(answer, answer) #??????????? price_hit = price_trend_hit(pred, answer) # ??????????? margin_rate=np.divide(margin1,margin2) score=np.sum(margin_rate) return score ,margin_rate, price_hit,missing
Example 24
def train(self): eps = 1e-10 for i in range(self.epo): if i % 1 == 0: self.show_error() A = np.asarray(self.A.copy()) Z = np.asarray(self.Z.copy()) start = time.time() Z1 = np.multiply(Z, np.asarray(self.A.transpose() * self.Y)) Z = np.divide(Z1, eps + np.asarray(self.A.transpose() * self.A * self.Z)) # + eps to avoid divided by 0 self.Z = np.asmatrix(Z) A1 = np.multiply(A, np.asarray( self.Y * self.Z.transpose())) A = np.divide(A1, eps + np.asarray( self.A * self.Z * self.Z.transpose())) end = time.time() self.A = np.asmatrix(A) self.time = self.time + end - start
Example 25
def make_xy_data(csv, drop_nan_columns=None): data = pd.read_csv(csv, index_col=0) n = len(data) if drop_nan_columns: data = data.dropna(subset=drop_nan_columns) print "[Warning] dropped %s samples because of NaN values" % (n-len(data)) y = np.divide(data[['prix']].astype(float).values.T, data[['surface_m2']].astype(float).values.T )[0] x = data.drop(['prix'], axis=1) return x, y
Example 26
def get_centroid_idf(text, emb, idf, stopwords, D): # Computing Terms' Frequency tf = defaultdict(int) tokens = bioclean(text) for word in tokens: if word in emb and word not in stopwords: tf[word] += 1 # Computing the centroid centroid = np.zeros((1, D)) div = 0 for word in tf: if word in idf: p = tf[word] * idf[word] centroid = np.add(centroid, emb[word]*p) div += p if div != 0: centroid = np.divide(centroid, div) return centroid
Example 27
def load_augment(fname, w, h, aug_params=no_augmentation_params, transform=None, sigma=0.0, color_vec=None): """Load augmented image with output shape (w, h). Default arguments return non augmented image of shape (w, h). To apply a fixed transform (color augmentation) specify transform (color_vec). To generate a random augmentation specify aug_params and sigma. """ img = load_image(fname) if transform is None: img = perturb(img, augmentation_params=aug_params, target_shape=(w, h)) else: img = perturb_fixed(img, tform_augment=transform, target_shape=(w, h)) np.subtract(img, MEAN[:, np.newaxis, np.newaxis], out=img) np.divide(img, STD[:, np.newaxis, np.newaxis], out=img) img = augment_color(img, sigma=sigma, color_vec=color_vec) return img
Example 28
def __init__(self, bounds, orig_resolution, tile_width, tile_height, tile_format_url, zoom_level=0, missing_z=None, image_leaf_shape=None): self.orig_bounds = bounds self.orig_resolution = orig_resolution self.tile_width = tile_width self.tile_height = tile_height self.tile_format_url = tile_format_url self.zoom_level = int(zoom_level) if missing_z is None: missing_z = [] self.missing_z = frozenset(missing_z) if image_leaf_shape is None: image_leaf_shape = [10, tile_height, tile_width] scale = np.exp2(np.array([0, self.zoom_level, self.zoom_level])).astype(np.int64) data_shape = (np.zeros(3), np.divide(bounds, scale).astype(np.int64)) self.image_data = OctreeVolume(image_leaf_shape, data_shape, 'float32', populator=self.image_populator) self.label_data = None
Example 29
def apply_cmvn(utt, mean, variance, reverse=False): """Apply mean and variance normalisation based on previously computed statistics. Args: utt: The utterance feature numpy matrix. stats: A numpy array containing the mean and variance statistics. The first row contains the sum of all the fautures and as a last element the total numbe of features. The second row contains the squared sum of the features and a zero at the end Returns: A numpy array containing the mean and variance normalized features """ if not reverse: #return mean and variance normalised utterance return np.divide(np.subtract(utt, mean), np.sqrt(variance)) else: #reversed normalization return np.add(np.multiply(utt, np.sqrt(variance)), mean)
Example 30
def updateQProbs(lastStateID, lastAction): # print 'np.sum(QCounts[lastStateID,]) = ', np.sum(QCounts[lastStateID,]) # print 'np.sum(QCounts[lastStateID,]) = ', np.sum(QCounts[lastStateID,]) # print 'np.sum(QValues[lastStateID,]) = ', np.sum(QValues[lastStateID,]) if np.sum(QCounts[lastStateID,]) == 0 or np.sum(QValues[lastStateID,]) == 0: tau = 1 else: # print '(-(np.mean(QValues[lastStateID,]))) = ', (-(np.mean(QValues[lastStateID,]))) # print '(np.mean(QCounts[lastStateID,])) = ', (np.mean(QCounts[lastStateID,])) tau = (-(np.mean(QValues[lastStateID,])))/(np.mean(QCounts[lastStateID,])) # print 'tau = ', tau numerator = np.exp(QValues[lastStateID, ]/tau) tempSum = np.sum(numerator) denominator = np.array([tempSum, tempSum, tempSum, tempSum, tempSum, tempSum, tempSum, tempSum]) QProbs[lastStateID, ] = np.divide(numerator, denominator) # initial dataframes which will be able to store performance data over different days
Example 31
def multistate_distribution(data, parameters, limit, normalize_likelihood_level_cell_counts = True): data_grandpa, data_parent, data_children = data sigma, b, a_grandpa, a_parent, a_children = parameters normalization_factor = normalize(sigma, a_grandpa, b, limit) grandpa_dist = [steady_state_distribution(x, sigma, a_grandpa, b, normalization_factor) for x in data_grandpa] normalization_factor = normalize(sigma, a_parent, b, limit) parent_dist = [steady_state_distribution(x, sigma, a_parent, b, normalization_factor) for x in data_parent] normalization_factor = normalize(sigma, a_children, b, limit) children_dist = [steady_state_distribution(x, sigma, a_children, b, normalization_factor) for x in data_children] grandpa_dist = np.array(grandpa_dist, dtype = float) parent_dist = np.array(parent_dist, dtype = float) children_dist = np.array(children_dist, dtype = float) if normalize_likelihood_level_cell_counts: grandpa_dist = np.divide(grandpa_dist, float(data_grandpa.size)) parent_dist = np.divide(parent_dist, float(data_parent.size)) children_dist = np.divide(children_dist, float(data_children.size)) return grandpa_dist, parent_dist, children_dist
Example 32
def process_study(study_id, out_dir): isometric_volume = np.load('../data_proc/stage1/isotropic_volumes_1mm/{}.npy'.format(study_id)) mean = np.mean(isometric_volume).astype(np.float32) std = np.std(isometric_volume).astype(np.float32) volume_resized = scipy.ndimage.interpolation.zoom(isometric_volume, np.divide(64, isometric_volume.shape), mode='nearest') volume_resized = (volume_resized.astype(np.float32) - mean) / (std + 1e-7) for i in range(7): z_shift = random.randint(0, 5) z0 = (volume_resized.shape[0]//2) - z_shift z1 = volume_resized.shape[0] - z_shift y_shift = random.randint(0, 5) y0 = y_shift y1 = (volume_resized.shape[1]//2) + y_shift volume_resized_sample = volume_resized[z0:z1, y0:y1, :] volume_resized_sample = np.expand_dims(volume_resized_sample, axis=3) out_filepath = os.path.join(out_dir, '{}.npy'.format(uuid4())) np.save(out_filepath, volume_resized_sample) return
Example 33
def setUp(self): # Base data definition. x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = masked_array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) self.err_status = np.geterr() np.seterr(divide='ignore', invalid='ignore')
Example 34
def __ifloordiv__(self, other): """ Floor divide self by other in-place. """ other_data = getdata(other) dom_mask = _DomainSafeDivide().__call__(self._data, other_data) other_mask = getmask(other) new_mask = mask_or(other_mask, dom_mask) # The following 3 lines control the domain filling if dom_mask.any(): (_, fval) = ufunc_fills[np.floor_divide] other_data = np.where(dom_mask, fval, other_data) self._mask |= new_mask self._data.__ifloordiv__(np.where(self._mask, self.dtype.type(1), other_data)) return self
Example 35
def __itruediv__(self, other): """ True divide self by other in-place. """ other_data = getdata(other) dom_mask = _DomainSafeDivide().__call__(self._data, other_data) other_mask = getmask(other) new_mask = mask_or(other_mask, dom_mask) # The following 3 lines control the domain filling if dom_mask.any(): (_, fval) = ufunc_fills[np.true_divide] other_data = np.where(dom_mask, fval, other_data) self._mask |= new_mask self._data.__itruediv__(np.where(self._mask, self.dtype.type(1), other_data)) return self
Example 36
def __ipow__(self, other): """ Raise self to the power other, in place. """ other_data = getdata(other) other_mask = getmask(other) with np.errstate(divide='ignore', invalid='ignore'): self._data.__ipow__(np.where(self._mask, self.dtype.type(1), other_data)) invalid = np.logical_not(np.isfinite(self._data)) if invalid.any(): if self._mask is not nomask: self._mask |= invalid else: self._mask = invalid np.copyto(self._data, self.fill_value, where=invalid) new_mask = mask_or(other_mask, invalid) self._mask = mask_or(self._mask, new_mask) return self
Example 37
def get_ensemble_weights(ensemble_dirs): ''' return ensembling weightes by reading ./output/<ensemble_dir>/models_ensembled.txt ''' total_models = 0 weights = np.zeros(len(ensemble_dirs)) for i, ensemble_dir in enumerate(ensemble_dirs): ensembled_model_names, _ = get_models_ensembled(ensemble_dir) num_models_used = len(ensembled_model_names) total_models += num_models_used weights[i] = num_models_used weights = np.divide(weights, total_models) return weights
Example 38
def htmt(self): htmt_ = pd.DataFrame(pd.DataFrame.corr(self.data_), index=self.manifests, columns=self.manifests) mean = [] allBlocks = [] for i in range(self.lenlatent): block_ = self.Variables['measurement'][ self.Variables['latent'] == self.latent[i]] allBlocks.append(list(block_.values)) block = htmt_.ix[block_, block_] mean_ = (block - np.diag(np.diag(block))).values mean_[mean_ == 0] = np.nan mean.append(np.nanmean(mean_)) comb = [[k, j] for k in range(self.lenlatent) for j in range(self.lenlatent)] comb_ = [(np.sqrt(mean[comb[i][1]] * mean[comb[i][0]])) for i in range(self.lenlatent ** 2)] comb__ = [] for i in range(self.lenlatent ** 2): block = (htmt_.ix[allBlocks[comb[i][1]], allBlocks[comb[i][0]]]).values # block[block == 1] = np.nan comb__.append(np.nanmean(block)) htmt__ = np.divide(comb__, comb_) where_are_NaNs = np.isnan(htmt__) htmt__[where_are_NaNs] = 0 htmt = pd.DataFrame(np.tril(htmt__.reshape( (self.lenlatent, self.lenlatent)), k=-1), index=self.latent, columns=self.latent) return htmt
Example 39
def updateTransform(self): muX = np.divide(np.sum(np.dot(self.P, self.X), axis=0), self.Np) muY = np.divide(np.sum(np.dot(np.transpose(self.P), self.Y), axis=0), self.Np) self.XX = self.X - np.tile(muX, (self.N, 1)) YY = self.Y - np.tile(muY, (self.M, 1)) self.A = np.dot(np.transpose(self.XX), np.transpose(self.P)) self.A = np.dot(self.A, YY) U, _, V = np.linalg.svd(self.A, full_matrices=True) C = np.ones((self.D, )) C[self.D-1] = np.linalg.det(np.dot(U, V)) self.R = np.dot(np.dot(U, np.diag(C)), V) self.YPY = np.dot(np.transpose(self.P1), np.sum(np.multiply(YY, YY), axis=1)) self.s = np.trace(np.dot(np.transpose(self.A), self.R)) / self.YPY self.t = np.transpose(muX) - self.s * np.dot(self.R, np.transpose(muY))
Example 40
def EStep(self): P = np.zeros((self.M, self.N)) for i in range(0, self.M): diff = self.X - np.tile(self.TY[i, :], (self.N, 1)) diff = np.multiply(diff, diff) P[i, :] = P[i, :] + np.sum(diff, axis=1) c = (2 * np.pi * self.sigma2) ** (self.D / 2) c = c * self.w / (1 - self.w) c = c * self.M / self.N P = np.exp(-P / (2 * self.sigma2)) den = np.sum(P, axis=0) den = np.tile(den, (self.M, 1)) den[den==0] = np.finfo(float).eps self.P = np.divide(P, den) self.Pt1 = np.sum(self.P, axis=0) self.P1 = np.sum(self.P, axis=1) self.Np = np.sum(self.P1)
Example 41
def updateTransform(self): muX = np.divide(np.sum(np.dot(self.P, self.X), axis=0), self.Np) muY = np.divide(np.sum(np.dot(np.transpose(self.P), self.Y), axis=0), self.Np) self.XX = self.X - np.tile(muX, (self.N, 1)) YY = self.Y - np.tile(muY, (self.M, 1)) self.A = np.dot(np.transpose(self.XX), np.transpose(self.P)) self.A = np.dot(self.A, YY) self.YPY = np.dot(np.transpose(YY), np.diag(self.P1)) self.YPY = np.dot(self.YPY, YY) Bt = np.linalg.solve(np.transpose(self.YPY), np.transpose(self.A)) self.B = np.transpose(Bt) self.t = np.transpose(muX) - np.dot(self.B, np.transpose(muY))
Example 42
def eStep(self): P = np.zeros((self.M, self.N)) for i in range(0, self.M): diff = self.X - np.tile(self.TY[i, :], (self.N, 1)) diff = np.multiply(diff, diff) P[i, :] = P[i, :] + np.sum(diff, axis=1) c = (2 * np.pi * self.sigma2) ** (self.D / 2) c = c * self.w / (1 - self.w) c = c * self.M / self.N P = np.exp(-P / (2 * self.sigma2)) den = np.sum(P, axis=0) den = np.tile(den, (self.M, 1)) den[den==0] = np.finfo(float).eps self.P = np.divide(P, den) self.Pt1 = np.sum(self.P, axis=0) self.P1 = np.sum(self.P, axis=1) self.Np = np.sum(self.P1)
Example 43
def sentence2vec(sentence, model=WORD2VEC, stopwords=STOPWORDS, metadata=None, section=None, wordvecs_only=True): """ Changes a sentence into a vector by averaging the word vectors of every non-stopword word in the sentence. :param sentence: the sentence to turn into a vector, as a list of words :param model: the word2vec model to use to convert words to vectors :param stopwords: stopwords to not include in the averaging of each sentence. :param metadata: dictionaries of metadata for the paper. :param section: the section of the paper the sentence occurs in. :param wordvecs_only: will turn a sentence into a vector using only the the word vectors from the model, no extra features. :return: the sentence in vector representation """ # The shape of the model, used to get the number of features and its vocab model_shape = model.syn0.shape vocab = set(model.index2word) # The array that will be used to calculate the average word vector average = np.zeros((model_shape[1]), dtype="float32") total_word_count = 0 for word in sentence: if word in stopwords: continue if word in vocab: word_rep = model[word] average += word_rep total_word_count += 1 if total_word_count == 0: total_word_count = 1 average = np.divide(average, total_word_count) sentence_vec = average return sentence_vec
Example 44
def evaluation(self, theta, X_test, y_test): theta = theta[:, :-1] M, n_test = theta.shape[0], len(y_test) prob = np.zeros([n_test, M]) for t in range(M): coff = np.multiply(y_test, np.sum(-1 * np.multiply(nm.repmat(theta[t, :], n_test, 1), X_test), axis=1)) prob[:, t] = np.divide(np.ones(n_test), (1 + np.exp(coff))) prob = np.mean(prob, axis=1) acc = np.mean(prob > 0.5) llh = np.mean(np.log(prob)) return [acc, llh]
Example 45
def update(self, x0, lnprob, n_iter = 1000, stepsize = 1e-3, bandwidth = -1, alpha = 0.9, debug = False): # Check input if x0 is None or lnprob is None: raise ValueError('x0 or lnprob cannot be None!') theta = np.copy(x0) # adagrad with momentum fudge_factor = 1e-6 historical_grad = 0 for iter in range(n_iter): if debug and (iter+1) % 1000 == 0: print 'iter ' + str(iter+1) lnpgrad = lnprob(theta) # calculating the kernel matrix kxy, dxkxy = self.svgd_kernel(theta, h = -1) grad_theta = (np.matmul(kxy, lnpgrad) + dxkxy) / x0.shape[0] # adagrad if iter == 0: historical_grad = historical_grad + grad_theta ** 2 else: historical_grad = alpha * historical_grad + (1 - alpha) * (grad_theta ** 2) adj_grad = np.divide(grad_theta, fudge_factor+np.sqrt(historical_grad)) theta = theta + stepsize * adj_grad return theta
Example 46
def __entropy(self, pdf): """Calculate shannon entropy of posterior distribution. Arguments --------- pdf : ndarray (float64) posterior distribution of psychometric curve parameters for each stimuli Returns ------- 1D numpy array (float64) : Shannon entropy of posterior for each stimuli """ # Marginalize out all nuisance parameters, i.e. all except alpha and sigma postDims = np.ndim(pdf) if self.marginalize == True: while postDims > 3: # marginalize out second-to-last dimension, last dim is x pdf = np.sum(pdf, axis=-2) postDims -= 1 # find expected entropy, suppress divide-by-zero and invalid value warnings # as this is handled by the NaN redefinition to 0 with np.errstate(divide='ignore', invalid='ignore'): entropy = np.multiply(pdf, np.log(pdf)) entropy[np.isnan(entropy)] = 0 # define 0*log(0) to equal 0 dimSum = tuple(range(postDims - 1)) # dimensions to sum over. also a Chinese dish entropy = -(np.sum(entropy, axis=dimSum)) return entropy
Example 47
def SLshearrecadjoint2D(X, shearletSystem): """ Adjoint of (pseudo-)inverse of 2D data. Note that this is also the (pseudo-)inverse of the adjoint. Usage: coeffs = SLshearrecadjoint2D(X, shearletSystem) Input: X : 2D data. shearletSystem: Structure containing a shearlet system. This should be the same system as the one previously used for decomposition. Output: coeffs: X x Y x N array of shearlet coefficients. """ # skipping useGPU stuff... # STUFF Xfreq = np.divide(fftlib.fftshift(fftlib.fft2(fftlib.ifftshift(X))), shearletSystem["dualFrameWeights"]) coeffs = np.zeros(shearletSystem["shearlets"].shape, dtype=complex) for j in range(shearletSystem["nShearlets"]): coeffs[:,:,j] = fftlib.fftshift(fftlib.ifft2(fftlib.ifftshift(Xfreq*np.conj(shearletSystem["shearlets"][:,:,j])))) return np.real(coeffs).astype(X.dtype) # ##############################################################################
Example 48
def __call__(self, sample): # keep tract of absolute value of self.diff = np.add(self.diff, np.absolute(np.asarray(sample.channel_data))) self.sample_count = self.sample_count + 1 elapsed_time = timeit.default_timer() - self.last_report if elapsed_time > self.polling_interval: channel_noise_power = np.divide(self.diff, self.sample_count) print (channel_noise_power) self.diff = np.zeros(self.eeg_channels) self.last_report = timeit.default_timer() # # Instanciate "monitor" thread
Example 49
def normalize(self): """ Normalize by maximum amplitude. """ return Wave(np.divide(self, np.max(np.abs(self), 0)), self.sample_rate)
Example 50
def normalize_points(self, x): return np.divide(x - np.amin(self.X, 0) , np.amax(self.X, 0) - np.amin(self.X, 0), np.empty_like(x))