Python numpy.tensordot() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def __init__(self,
                 orderx,xmin,xmax,
                 ordery,ymin,ymax):
        "Constructor. Needs order and domain in x and y"
        self.orderx,self.ordery = orderx,ordery
        self.stencils = [PseudoSpectralDiscretization1D(orderx,xmin,xmax),
                         PseudoSpectralDiscretization1D(ordery,ymin,ymax)]
        self.stencil_x,self.stencil_y = self.stencils
        self.quads = [s.quads for s in self.stencils]
        self.colocs = [s.colocation_points for s in self.stencils]
        self.x,self.y = self.colocs
        self.colocs2d = np.meshgrid(*self.colocs,indexing='ij')
        self.X,self.Y = self.colocs2d
        self.weights = [s.weights for s in self.stencils]
        self.weights_x,self.weights_y = self.weights
        self.weights2D = np.tensordot(*self.weights,axes=0) 

Example 2

def itensordot(arrays, axes = 2):
    """
    Yields the cumulative array inner product (dot product) of arrays.

    Parameters
    ----------
    arrays : iterable
        Arrays to be reduced.
    axes : int or (2,) array_like
        * integer_like: If an int N, sum over the last N axes of a 
          and the first N axes of b in order. The sizes of the corresponding axes must match.
        * (2,) array_like: Or, a list of axes to be summed over, first sequence applying to a, 
          second to b. Both elements array_like must be of the same length.
    
    Yields
    ------
    online_tensordot : ndarray

    See Also
    --------
    numpy.tensordot : Compute the tensordot on two tensors.
    """
    yield from _ireduce_linalg(arrays, np.tensordot, axes = axes) 

Example 3

def tensordot(self, other, axes):
        """Compute tensor dot product along named axes.

        An error will be raised if the remaining axes of self and
        other contain duplicate names.

        :param other: Another named_ndarray instance
        :param axes: List of axis name pairs (self_name, other_name)
            to be contracted
        :returns: Result as named_ndarray
        """
        axes_self = [names[0] for names in axes]
        axes_other = [names[1] for names in axes]
        axespos_self = [self.axispos(name) for name in axes_self]
        axespos_other = [other.axispos(name) for name in axes_other]
        new_names = [name for name in self._axisnames if name not in axes_self]
        new_names += (name for name in other._axisnames if name not in axes_other)
        array = np.tensordot(self._array, other._array,
                             (axespos_self, axespos_other))
        return named_ndarray(array, new_names) 

Example 4

def test_split(nr_sites, local_dim, rank, rgen):
    if nr_sites < 2:
        return
    mpa = factory.random_mpa(nr_sites, local_dim, rank, randstate=rgen)
    for pos in range(nr_sites - 1):
        mpa_l, mpa_r = mpa.split(pos)
        assert len(mpa_l) == pos + 1
        assert len(mpa_l) + len(mpa_r) == nr_sites
        assert_correct_normalization(mpa_l)
        assert_correct_normalization(mpa_r)
        recons = np.tensordot(mpa_l.to_array(), mpa_r.to_array(), axes=(-1, 0))
        assert_array_almost_equal(mpa.to_array(), recons)

    for (lnorm, rnorm) in it.product(range(nr_sites - 1), range(1, nr_sites)):
        mpa_l, mpa_r = mpa.split(nr_sites // 2 - 1)
        assert_correct_normalization(mpa_l)
        assert_correct_normalization(mpa_r) 

Example 5

def transform(xi, cube):
    '''Transform the points `xi` from the reference cube to `cube`.
    '''
    # For d==2, the result used to be computed with
    #
    # out = (
    #     + outer(0.25*(1.0-xi[0])*(1.0-xi[1]), cube[0, 0])
    #     + outer(0.25*(1.0+xi[0])*(1.0-xi[1]), cube[1, 0])
    #     + outer(0.25*(1.0-xi[0])*(1.0+xi[1]), cube[0, 1])
    #     + outer(0.25*(1.0+xi[0])*(1.0+xi[1]), cube[1, 1])
    #     )
    #
    # This array of multiplications and additions is reminiscent of dot(), and
    # indeed tensordot() can handle the situation. We just need to compute the
    # `1+-xi` products and align them with `cube`.
    one_mp_xi = numpy.stack([
        0.5 * (1.0 - xi),
        0.5 * (1.0 + xi),
        ], axis=1)
    a = helpers.n_outer(one_mp_xi)

    # TODO kahan tensordot
    # <https://stackoverflow.com/q/45372098/353337>
    d = xi.shape[0]
    return numpy.tensordot(a, cube, axes=(range(d), range(d))) 

Example 6

def polmatrixmultiply(cm, vec, polaxis=1):
    """Matrix multiply of appropriate axis of vec [...,:] by cm

    For an image vec has axes [nchan, npol, ny, nx] and polaxis=1
    For visibility vec has axes [row, nchan, npol] and polaxis=2

    :param cm: matrix to apply
    :param vec: array to be multiplied [...,:]
    :param polaxis: which axis contains the polarisation
    :return: multiplied vec
    """
    if len(vec.shape) == 1:
        return numpy.dot(cm, vec)
    else:
        # This tensor swaps the first two axes so we need to tranpose back
        result = numpy.tensordot(cm, vec, axes=(1, polaxis))
        permut = list(range(len(result.shape)))
        permut[0], permut[polaxis] = permut[polaxis], permut[0]
        return numpy.transpose(result, axes=permut) 

Example 7

def slice_recommendations(self, test_data, shape, start, end):
        test_tensor_unfolded, slice_idx = self.get_test_tensor(test_data, shape, start, end)
        num_users = end - start
        num_items = shape[1]
        num_fdbks = shape[2]
        v = self._items_factors
        w = self._feedback_factors

        # assume that w.shape[1] < v.shape[1] (allows for more efficient calculations)
        scores = test_tensor_unfolded.dot(w).reshape(num_users, num_items, w.shape[1])
        scores = np.tensordot(scores, v, axes=(1, 0))
        scores = np.tensordot(np.tensordot(scores, v, axes=(2, 1)), w, axes=(1, 1))
        scores = self.flatten_scores(scores, self.flattener)
        return scores, slice_idx

    # additional functionality: rating pediction 

Example 8

def test_convolve_generalization():
    ag_convolve = autograd.scipy.signal.convolve
    A_35 = R(3, 5)
    A_34 = R(3, 4)
    A_342 = R(3, 4, 2)
    A_2543 = R(2, 5, 4, 3)
    A_24232 = R(2, 4, 2, 3, 2)

    for mode in ['valid', 'full']:
        assert npo.allclose(ag_convolve(A_35,      A_34, axes=([1], [0]), mode=mode)[1, 2],
                            sp_convolve(A_35[1,:], A_34[:, 2], mode))
        assert npo.allclose(ag_convolve(A_35, A_34, axes=([],[]), dot_axes=([0], [0]), mode=mode),
                            npo.tensordot(A_35, A_34, axes=([0], [0])))
        assert npo.allclose(ag_convolve(A_35, A_342, axes=([1],[2]),
                                        dot_axes=([0], [0]), mode=mode)[2],
                            sum([sp_convolve(A_35[i, :], A_342[i, 2, :], mode)
                                 for i in range(3)]))
        assert npo.allclose(ag_convolve(A_2543, A_24232, axes=([1, 2],[2, 4]),
                                        dot_axes=([0, 3], [0, 3]), mode=mode)[2],
                            sum([sum([sp_convolve(A_2543[i, :, :, j],
                                                 A_24232[i, 2, :, j, :], mode)
                                      for i in range(2)]) for j in range(3)])) 

Example 9

def calcM(N, Co, U, V):
    GK = U.shape[2]
    Ci = U.shape[3]
    tiles = V.shape[3]
    GN = V.shape[2]

    print('calcM cpu GN', GN, 'N', N)
    U = U.transpose(0,1,2,4,3).reshape(6,6,GK * 32,Ci)[:,:,:Co,:]

    V = V.transpose(
        2,6,0,1,5,3,4).reshape(
        GN * 32, 6, 6, Ci, tiles, tiles)[:N]

    M = np.zeros((N, Co, tiles, tiles, 6, 6), dtype=np.float32)
    for n in range(N):
        for xi in range(6):
            for nu in range(6):
                M[n,:, :, :, xi, nu] = np.tensordot(U[xi,nu], V[n,xi,nu], 1)
    timecheck('calced M')
    return M 

Example 10

def collapse(T, W, divisive=False):

	if divisive: W = W / np.sum(np.square(W.reshape(W.shape[0], -1)), 1)[:,None,None,None]

	if T.shape[-6] == W.shape[0]: # Z ONLY (after 2nd-stage expansion)

		W = np.reshape (W, (1,)*(T.ndim-6) + (W.shape[0],1,1) + W.shape[1:])
		T = ne.evaluate('T*W')
		T = np.reshape (T, T.shape[:-3] + (np.prod(T.shape[-3:]),))
		T = np.sum(T, -1)

	else: # X ONLY (conv, before 2nd-stage expansion)

		T = np.squeeze  (T, -6)
		T = np.tensordot(T, W, ([-3,-2,-1], [1,2,3]))
		T = np.rollaxis (T, -1, 1)

	return T 

Example 11

def backward(self, T, mode='X'):

		if 'X' in mode and 'G' in mode:

			D = T
			X = np.squeeze  (self.X, 1)
			G = np.tensordot(D, X, ([0,2,3],[0,1,2]))
			self.accumulate(G)

		if 'X' in mode: T = uncollapse(T, self.W)
		else          : T = np.sum(T, 1)[:,None]

		O = np.zeros((T.shape[0], 1) + (self.sh[2]-self.w[2]+1, self.sh[3]-self.w[3]+1) + tuple(self.w[1:]) + T.shape[7:], dtype='float32')

		_ = ne.evaluate('T', out=O[self.S]) #O[self.S] = T
		O = unexpand(O)

		return O 

Example 12

def backward_cpu(self, inputs, grad_outputs):
        x, W = inputs[:2]
        b = inputs[2] if len(inputs) == 3 else None
        gy = grad_outputs[0]
        h, w = x.shape[2:]

        gW = numpy.tensordot(gy, self.col, ((0, 2, 3), (0, 4, 5)))
        gcol = numpy.tensordot(W, gy, (0, 1))
        gcol = numpy.rollaxis(gcol, 3)
        gx = conv.col2im_cpu(gcol, self.sy, self.sx, self.ph, self.pw, h, w)

        if b is None:
            return gx, gW
        else:
            gb = gy.sum(axis=(0, 2, 3))
            return gx, gW, gb 

Example 13

def forward_cpu(self, inputs):
        x, W = inputs[:2]
        b = inputs[2] if len(inputs) == 3 else None
        kh, kw = W.shape[2:]
        _, _, h, w = x.shape
        gcol = numpy.tensordot(W, x, (0, 1))
        # - k, m, n: shape of out_channel
        # - b: number of inputs
        # - h, w: height and width of kernels
        # k, m, n, b, h, w -> b, k, m, n, h, w
        gcol = numpy.rollaxis(gcol, 3)
        if self.outh is None:
            self.outh = conv.get_deconv_outsize(h, kh, self.sy, self.ph)
        if self.outw is None:
            self.outw = conv.get_deconv_outsize(w, kw, self.sx, self.pw)
        y = conv.col2im_cpu(
            gcol, self.sy, self.sx, self.ph, self.pw, self.outh, self.outw)
        # b, k, h, w
        if b is not None:
            y += b.reshape(1, b.size, 1, 1)
        return y, 

Example 14

def backward_cpu(self, inputs, grad_outputs):
        x, W = inputs[:2]
        b = inputs[2] if len(inputs) == 3 else None
        gy = grad_outputs[0]
        kh, kw = W.shape[2:]
        col = conv.im2col_cpu(
            gy, kh, kw, self.sy, self.sx, self.ph, self.pw)
        gW = numpy.tensordot(x, col, ([0, 2, 3], [0, 4, 5]))
        gx = numpy.tensordot(col, W, ([1, 2, 3], [1, 2, 3]))
        gx = numpy.rollaxis(gx, 3, 1)

        if b is None:
            return gx, gW
        else:
            gb = gy.sum(axis=(0, 2, 3))
            return gx, gW, gb 

Example 15

def predictor(self, movie_id, user_id):

        w = self.getW(user_movies[user_id])
        
        #making predictions part Vq not given
        data = copy.deepcopy(self.data[user_id])
        probs = np.ones(5)
        
        mx, index = -1, 0

        for i in range(5):
            calc = 1.0
            for j in range(self.F):
                temp = np.tensordot(data, self.getW(user_movies[user_id])[j]) + self.featureBias[j]
                temp = 1.0 + np.exp(temp)
                calc *= temp
            probs[i] = calc

            if mx < probs[i]:
                index = i
                mx = probs[i]

        return index 

Example 16

def backward_cpu(self, inputs, grad_outputs):
        x, W = inputs[:2]
        Wb = binarize_cpu(W)
        b = inputs[2] if len(inputs) == 3 else None
        gy = grad_outputs[0]
        h, w = x.shape[2:]

        gW = numpy.tensordot(gy, self.col, ((0, 2, 3), (0, 4, 5)))
        gcol = numpy.tensordot(Wb, gy, (0, 1))
        gcol = numpy.rollaxis(gcol, 3)
        gx = conv.col2im_cpu(gcol, self.sy, self.sx, self.ph, self.pw, h, w)

        if b is None:
            return gx, gW
        else:
            gb = gy.sum(axis=(0, 2, 3))
            return gx, gW, gb 

Example 17

def forward_cpu(self, inputs):
        x, W = inputs[:2]
        b = inputs[2] if len(inputs) == 3 else None
        kh, kw = W.shape[2:]
        self.col = conv.im2col_cpu(
            x, kh, kw, self.sy, self.sx, self.ph, self.pw,
            cover_all=self.cover_all)

        Wb = numpy.where(W>=0,1,-1).astype(W.dtype, copy=False)

        y = numpy.tensordot(
            self.col, Wb, ((1, 2, 3), (1, 2, 3))).astype(x.dtype, copy=False)

        if b is not None:
            y += b

        return numpy.rollaxis(y, 3, 1), 

Example 18

def backward_cpu(self, inputs, grad_outputs):
        x, W = inputs[:2]
        b = inputs[2] if len(inputs) == 3 else None
        gy = grad_outputs[0]
        h, w = x.shape[2:]

        gW = numpy.tensordot(
            gy, self.col, ((0, 2, 3), (0, 4, 5))).astype(W.dtype, copy=False)

        Wb = numpy.where(W>=0,1,-1).astype(W.dtype, copy=False)

        gcol = numpy.tensordot(Wb, gy, (0, 1)).astype(x.dtype, copy=False)

        gcol = numpy.rollaxis(gcol, 3)
        gx = conv.col2im_cpu(gcol, self.sy, self.sx, self.ph, self.pw, h, w)

        if b is None:
            return gx, gW
        else:
            gb = gy.sum(axis=(0, 2, 3))
            return gx, gW, gb 

Example 19

def forward_cpu(self, inputs):
        x, W = inputs[:2]
        b = inputs[2] if len(inputs) == 3 else None
        kh, kw = W.shape[2:]
        self.col = conv.im2col_cpu(
            x, kh, kw, self.sy, self.sx, self.ph, self.pw,
            cover_all=self.cover_all)

        Xb = numpy.where(self.col>0,1,self.col).astype(x.dtype, copy=False)
        Xb = numpy.where(self.col<0,-1,Xb).astype(x.dtype, copy=False)
        Wb = numpy.where(W>=0,1,-1).astype(W.dtype, copy=False)
        y = numpy.tensordot(
            Xb, Wb, ((1, 2, 3), (1, 2, 3))).astype(x.dtype, copy=False)
        if b is not None:
            y += b

        return numpy.rollaxis(y, 3, 1), 

Example 20

def backward_cpu(self, inputs, grad_outputs):
        x, W = inputs[:2]
        b = inputs[2] if len(inputs) == 3 else None
        gy = grad_outputs[0]
        h, w = x.shape[2:]

        gW = numpy.tensordot(
            gy, self.col, ((0, 2, 3), (0, 4, 5))).astype(W.dtype, copy=False)

        Wb = numpy.where(W>=0,1,-1).astype(W.dtype, copy=False)

        gcol = numpy.tensordot(Wb, gy, (0, 1)).astype(x.dtype, copy=False)

        gcol = numpy.rollaxis(gcol, 3)
        gx = conv.col2im_cpu(gcol, self.sy, self.sx, self.ph, self.pw, h, w)

        if b is None:
            return gx, gW
        else:
            gb = gy.sum(axis=(0, 2, 3))
            return gx, gW, gb 

Example 21

def get_roto_translation_matrix(theta, rotation_axis=np.array([1,0,0]),  translation=np.array([0, 0, 0])):

    n = np.linalg.norm(rotation_axis)
    assert not np.abs(n) < 0.001, 'rotation axis too close to zero.'
    rot = rotation_axis / n

    # rodriguez formula:
    cross_prod = np.array([[0, -rot[2], rot[1]],
                           [rot[2], 0, -rot[0]],
                           [-rot[1], rot[0], 0]])
    rot_part = np.cos(theta) * np.identity(3) + np.sin(theta) * cross_prod + np.tensordot(rot, rot, axes=0)

    # transformations parameters

    rot_transl = np.identity(4)
    rot_transl[:3, :3] = rot_part
    rot_transl[:3, 3] = translation

    return rot_transl 

Example 22

def backward_cpu(self, inputs, grad_outputs):
        x, W = inputs[:2]
        Wb = numpy.where(W>=0, 1, -1).astype(numpy.float32, copy=False)
        b = inputs[2] if len(inputs) == 3 else None
        gy = grad_outputs[0]
        h, w = x.shape[2:]

        gW = numpy.tensordot(gy, self.col, ((0, 2, 3), (0, 4, 5)))
        gcol = numpy.tensordot(Wb, gy, (0, 1))
        gcol = numpy.rollaxis(gcol, 3)
        gx = conv.col2im_cpu(gcol, self.sy, self.sx, self.ph, self.pw, h, w)

        if b is None:
            return gx, gW
        else:
            gb = gy.sum(axis=(0, 2, 3))
            return gx, gW, gb 

Example 23

def g_def(self, v, t, vbar):
        v = np.reshape(v, self.vshape)
        id_m = np.array([[1, 0], [0, 1]])
        ret = []
        for k in xrange(len(v)):
            t_p = np.tensordot(v[k], v[k], axes=0)
            p_vk = id_m - t_p
            r_ori = 2 * np.pi * np.random.random()
            ret_s = self.nu * np.dot(p_vk, vbar[k]) + self.C * np.dot(p_vk, [np.sin(r_ori), np.cos(r_ori)])

            ret_s = np.reshape(ret_s, [2, 1])
            ret.append(ret_s)

        ret = np.array(ret)

        return np.reshape(ret, 2 * len(ret)) 

Example 24

def predict(self, tree):
        if tr.isleaf(tree):
            # output = word vector
            try:
                tree.vector = self.L[:, self.word_map[tree[0]]]
            except:
                tree.vector = self.L[:, self.word_map[tr.UNK]]
        else:
            # calculate output of child nodes
            self.predict(tree[0])
            self.predict(tree[1])

            # compute output
            lr = np.hstack([tree[0].vector, tree[1].vector])
            tree.vector = np.tanh(
                np.tensordot(self.V, np.outer(lr, lr), axes=([1, 2], [0, 1])) +
                np.dot(self.W, lr) + self.b)

        # softmax
        import util
        tree.output = util.softmax(np.dot(self.Ws, tree.vector) + self.bs)
        label = np.argmax(tree.output)
        tree.set_label(str(label))
        return tree 

Example 25

def backward_cpu(self, inputs, grad_outputs):
        x, W = inputs[:2]
        Wb = numpy.where(W>=0, 1, -1).astype(numpy.float32, copy=False)
        b = inputs[2] if len(inputs) == 3 else None
        gy = grad_outputs[0]
        h, w = x.shape[2:]

        gW = numpy.tensordot(gy, self.col, ((0, 2, 3), (0, 4, 5)))
        gcol = numpy.tensordot(Wb, gy, (0, 1))
        gcol = numpy.rollaxis(gcol, 3)
        gx = conv.col2im_cpu(gcol, self.sy, self.sx, self.ph, self.pw, h, w)

        if b is None:
            return gx, gW
        else:
            gb = gy.sum(axis=(0, 2, 3))
            return gx, gW, gb 

Example 26

def __pow__(self, other):
        if self.data is None:
            raise ValueError("No power without ndarray data.")
        numpy = import_module('numpy')
        free = self.free

        marray = self.data
        for metric in free:
            marray = numpy.tensordot(
                marray,
                numpy.tensordot(
                    metric[0]._tensortype.data,
                    marray,
                    (1, 0)
                ),
                (0, 0)
            )
        pow2 = marray[()]
        return pow2 ** (Rational(1, 2) * other) 

Example 27

def apply_grad_cartesian_tensor(grad_X, zmat_dist):
    """Apply the gradient for transformation to cartesian space onto zmat_dist.

    Args:
        grad_X (:class:`numpy.ndarray`): A ``(3, n, n, 3)`` array.
            The mathematical details of the index layout is explained in
            :meth:`~chemcoord.Cartesian.get_grad_zmat()`.
        zmat_dist (:class:`~chemcoord.Zmat`):
            Distortions in Zmatrix space.

    Returns:
        :class:`~chemcoord.Cartesian`: Distortions in cartesian space.
    """
    columns = ['bond', 'angle', 'dihedral']
    C_dist = zmat_dist.loc[:, columns].values.T
    try:
        C_dist = C_dist.astype('f8')
        C_dist[[1, 2], :] = np.radians(C_dist[[1, 2], :])
    except (TypeError, AttributeError):
        C_dist[[1, 2], :] = sympy.rad(C_dist[[1, 2], :])
    cart_dist = np.tensordot(grad_X, C_dist, axes=([3, 2], [0, 1])).T
    from chemcoord.cartesian_coordinates.cartesian_class_main import Cartesian
    return Cartesian(atoms=zmat_dist['atom'],
                     coords=cart_dist, index=zmat_dist.index) 

Example 28

def forward_cpu(self, inputs):
        x, W = inputs[:2]
        n_batch, c_in, N = x.shape
        b = inputs[2] if len(inputs) == 3 else None

        K = self.K
        if x.dtype != self.LmI.dtype:
            self.LmI = self.LmI.astype(x.dtype)

        C = np.empty((n_batch, K, N, c_in), dtype=x.dtype)
        chebyshev_matvec_cpu(C, x, K, n_batch, self.LmI)
        C = C.transpose((0, 3, 1, 2))
        self.C = C
        y = np.tensordot(C, W, ((1, 2), (1, 2)))

        if b is not None:
            y += b

        return np.rollaxis(y, 2, 1),  # y.shape = (n_batch, c_out, N) 

Example 29

def forward_gpu(self, inputs):
        x, W = inputs[:2]
        n_batch, c_in, N = x.shape
        b = inputs[2] if len(inputs) == 3 else None
        xp = cuda.get_array_module(x)
        with cuda.get_device(x.data):
            K = self.K
            LmI_data, LmI_indices, LmI_indptr = self.LmI_tuple

            if x.dtype != LmI_data.dtype:
                LmI_data = LmI_data.astype(x.dtype)

            C = xp.empty((K, N, c_in, n_batch), dtype=x.dtype)
            chebyshev_matvec_gpu(C, x, K, n_batch,
                                 LmI_data, LmI_indices, LmI_indptr)

            C = C.transpose((3, 2, 0, 1))
            self.C = C
            y = xp.tensordot(C, W, ((1, 2), (1, 2)))

            if b is not None:
                y += b

            return xp.rollaxis(y, 2, 1),  # y.shape = (n_batch, c_out, N) 

Example 30

def test_tensordot(a_shape, b_shape, axes):
    a = random_x(a_shape)
    b = random_x(b_shape)

    sa = COO.from_numpy(a)
    sb = COO.from_numpy(b)

    assert_eq(np.tensordot(a, b, axes),
              sparse.tensordot(sa, sb, axes))

    assert_eq(np.tensordot(a, b, axes),
              sparse.tensordot(sa, b, axes))

    # assert isinstance(sparse.tensordot(sa, b, axes), COO)

    assert_eq(np.tensordot(a, b, axes),
              sparse.tensordot(a, sb, axes))

    # assert isinstance(sparse.tensordot(a, sb, axes), COO) 

Example 31

def test_raise_error(self):
        amat = matrix()
        bmat = matrix()
        bvec = vector()

        # Test invalid length for axes
        self.assertRaises(ValueError, tensordot, amat, bmat, (0, 1, 2))

        # Test axes of uneven length
        self.assertRaises(ValueError, tensordot, amat, bmat, ((0, 1), (0)))

        # Test invalid len(axes) given inputs are matrices
        self.assertRaises(ValueError, tensordot, amat, bmat, ((0, 1, 2), (0, 1, 2)))

        # Test invalid axes[1] given that y is a vector
        self.assertRaises(ValueError, tensordot, amat, bvec, (0, 1))

        # Test invalid scalar axes given inputs are matrices
        self.assertRaises(ValueError, tensordot, amat, bvec, 2) 

Example 32

def test_weird_valid_axes(self):
        # Test matrix-matrix
        amat = matrix()
        bmat = matrix()
        for axes in [0,
                     (1, 0),
                     [1, 0],
                     (1, (0, )),
                     ((1, ), 0),
                     ([1], [0]),
                     ([], [])]:
            c = tensordot(amat, bmat, axes)
            f3 = inplace_func([amat, bmat], c)
            aval = rand(4, 7)
            bval = rand(7, 9)
            self.assertTrue(numpy.allclose(numpy.tensordot(aval, bval, axes),
                                           f3(aval, bval)))
            utt.verify_grad(self.TensorDot(axes), [aval, bval]) 

Example 33

def test_scalar_axes(self):
        # Test matrix-matrix
        amat = fmatrix()
        bmat = dmatrix()
              # We let at float64 to test mix of float32 and float64.
        axes = 1
        aval = rand(4, 5).astype('float32')
        bval = rand(5, 3)
        c = tensordot(amat, bmat, axes)
        f3 = inplace_func([amat, bmat], c)
        self.assertTrue(numpy.allclose(numpy.tensordot(aval, bval, axes),
                                       f3(aval, bval)))
        utt.verify_grad(self.TensorDot(axes), [aval, bval])

        # Test tensor-tensor
        amat = tensor3()
        bmat = tensor3()
        axes = 2
        aval = rand(3, 4, 5)
        bval = rand(4, 5, 3)
        c = tensordot(amat, bmat, axes)
        f3 = inplace_func([amat, bmat], c)
        self.assertTrue(numpy.allclose(numpy.tensordot(aval, bval, axes),
                                       f3(aval, bval)))
        utt.verify_grad(self.TensorDot(axes), [aval, bval]) 

Example 34

def _develop(self, basis):
        """Compute the AR models and gains at instants fixed by newcols

        returns:
        ARcols : array containing the AR parts
        Gcols  : array containing the gains

        The size of ARcols is (1 + ordar_, n_epochs, n_points)
        The size of Gcols is (1, n_epochs, n_points)

        """
        n_basis, n_epochs, n_points = basis.shape
        ordar_ = self.ordar_

        # -------- expand on the basis
        AR_cols_ones = np.ones((1, n_epochs, n_points))
        if ordar_ > 0:
            AR_cols = np.tensordot(self.AR_, basis, axes=([1], [0]))
            AR_cols = np.vstack((AR_cols_ones, AR_cols))
        else:
            AR_cols = AR_cols_ones
        G_cols = self._develop_gain(basis, squared=False, log=False)
        return (AR_cols, G_cols) 

Example 35

def _develop_parcor(self, LAR, basis):
        single_dim = LAR.ndim == 1
        LAR = np.atleast_2d(LAR)
        # n_basis, n_epochs, n_points = basis.shape
        # ordar, n_basis = LAR.shape
        # ordar, n_epochs, n_points = lar_list.shape
        lar_list = np.tensordot(LAR, basis, axes=([1], [0]))

        if single_dim:
            # n_epochs, n_points = lar_list.shape
            lar_list = lar_list[0, :, :]
        return lar_list

    # ------------------------------------------------ #
    # Functions that should be overloaded              #
    # ------------------------------------------------ # 

Example 36

def tensordotcontract(tensors):
    '''
    Use np.tensordot to implement the contraction of tensors.

    Parameters
    ----------
    tensors : list of Tensor
        The tensors to be contracted.

    Returns
    -------
    Tensor
        The contracted tensor.
    '''
    def _contract_(a,b):
        common=set(a.labels)&set(b.labels)
        aaxes=[a.axis(label) for label in common]
        baxes=[b.axis(label) for label in common]
        labels=[label for label in it.chain(a.labels,b.labels) if label not in common]
        axes=(aaxes,baxes) if len(common)>0 else 0
        return Tensor(np.tensordot(a,b,axes=axes),labels=labels)
    result=tensors[0]
    for i in xrange(1,len(tensors)):
        result=_contract_(result,tensors[i])
    return result 

Example 37

def mgf_kmesh(self,omega,kmesh):
        '''
        Returns the mesh of the Green's functions in the mixed representation with respect to momentums.

        Parameters
        ----------
        omega : np.complex128/np.complex64
            The frequency of the mixed Green's functions.
        kmesh : (n+1)d ndarray like
            The kmesh of the mixed Green's functions.
            And n is the spatial dimension of the system.

        Returns
        -------
        3d ndarray
            The mesh of the mixed Green's functions.
        '''
        cgf=self.cgf(omega)
        return np.tensordot(cgf,inv(np.identity(cgf.shape[0],dtype=cgf.dtype)-self.pt_kmesh(kmesh).dot(cgf)),axes=([1],[1])).transpose((1,0,2)) 

Example 38

def VCAEB(engine,app):
    '''
    This method calculates the single particle spectrum along a path in the Brillouin zone.
    '''
    engine.rundependences(app.name)
    engine.cache.pop('pt_kmesh',None)
    erange,kmesh,nk=np.linspace(app.emin,app.emax,app.ne),app.path.mesh('k'),app.path.rank('k')
    result=np.zeros((nk,app.ne,3))
    result[:,:,0]=np.tensordot(np.array(xrange(nk)),np.ones(app.ne),axes=0)
    result[:,:,1]=np.tensordot(np.ones(nk),erange,axes=0)
    for i,omega in enumerate(erange):
        result[:,i,2]=-(np.trace(engine.gf_kmesh(omega+app.mu+app.eta*1j,kmesh),axis1=1,axis2=2)).imag/engine.nopt/np.pi
    name='%s_%s'%(engine,app.name)
    if app.savedata: np.savetxt('%s/%s.dat'%(engine.dout,name),result.reshape((nk*app.ne,3)))
    if app.plot: app.figure('P',result,'%s/%s'%(engine.dout,name))
    if app.returndata: return result 

Example 39

def update_grad_input(self, x, grad_output):
        self.grad_input = np.zeros_like(x)
        if x.dims == 3:
            C, H, W = x.shape
            x_flat = x.view(C, H * W)
            self.buffer = np.dot(grad_output, x_flat)
            self.buffer += np.dot(grad_output.T, x_flat)
            self.grad_input = self.buffer.view(C, H, W)
        if x.dims == 4:
            N, C, H, W = x.shape
            x_flat = x.view(N, C, H * W)
            self.buffer = np.tensordot(grad_output, x_flat, 2)
            self.buffer += np.tensordot(grad_output.transpose(2, 3), x_flat, 2)
            self.grad_input = self.buffer.view(N, C, H, W)
        if self.normalize:
            self.buffer /= C * H * W
        return self.grad_input 

Example 40

def test_against_numpy_tensordot(self):
        """ Test against numpy.tensordot in 2D case """
        stream = tuple(np.random.random((8, 8)) for _ in range(2))

        for axis in (0, 1, 2):
            with self.subTest('axis = {}'.format(axis)):
                from_numpy = np.tensordot(*stream)
                from_stream = last(itensordot(stream))

                self.assertSequenceEqual(from_numpy.shape, from_stream.shape)
                self.assertTrue(np.allclose(from_numpy, from_stream)) 

Example 41

def test_against_numpy_inner(self):
        """ Test against numpy.tensordot in 2D case """
        stream = tuple(np.random.random((8, 8)) for _ in range(2))

        for axis in (0, 1, 2):
            with self.subTest('axis = {}'.format(axis)):
                from_numpy = np.inner(*stream)
                from_stream = last(iinner(stream))

                self.assertSequenceEqual(from_numpy.shape, from_stream.shape)
                self.assertTrue(np.allclose(from_numpy, from_stream)) 

Example 42

def _eig_rightvec_add(rightvec, mpo_lten, mps_lten):
    """Add one column to the right vector.

    :param rightvec: existing right vector
        It has three indices: mps bond, mpo bond, complex conjugate mps bond
    :param op_lten: Local tensor of the MPO
    :param mps_lten: Local tensor of the current MPS eigenstate

    This does the same thing as _eig_leftvec_add(), except that
    'left' and 'right' are exchanged in the contractions (but not in
    the axis names of the input tensors).

    """
    rightvec_names = ('mps_bond', 'mpo_bond', 'cc_mps_bond')
    mpo_names = ('left_mpo_bond', 'phys_row', 'phys_col', 'right_mpo_bond')
    mps_names = ('left_mps_bond', 'phys', 'right_mps_bond')
    rightvec = named_ndarray(rightvec, rightvec_names)
    mpo_lten = named_ndarray(mpo_lten, mpo_names)
    mps_lten = named_ndarray(mps_lten, mps_names)

    contract_mps = (('mps_bond', 'right_mps_bond'),)
    rightvec = rightvec.tensordot(mps_lten, contract_mps)
    rename_mps = (('left_mps_bond', 'mps_bond'),)
    rightvec = rightvec.rename(rename_mps)

    contract_mpo = (
        ('mpo_bond', 'right_mpo_bond'),
        ('phys', 'phys_col'))
    rightvec = rightvec.tensordot(mpo_lten, contract_mpo)
    contract_cc_mps = (
        ('cc_mps_bond', 'right_mps_bond'),
        ('phys_row', 'phys'))
    rightvec = rightvec.tensordot(mps_lten.conj(), contract_cc_mps)
    rename_mps_mpo = (
        ('left_mpo_bond', 'mpo_bond'),
        ('left_mps_bond', 'cc_mps_bond'))
    rightvec = rightvec.rename(rename_mps_mpo)

    rightvec = rightvec.to_array(rightvec_names)
    return rightvec 

Example 43

def _eig_leftvec_add_mps(lv, lt1, lt2):
    """Add one column to the left vector (MPS version)"""
    # MPS 1: Interpreted as |psiXpsi| part of the operator
    # MPS 2: The current eigvectector candidate
    # NB: It would be more efficient to store lt1.conj() instead of lt1.
    # lv axes: 0: mps1 bond, 1: mps2 bond
    lv = np.tensordot(lv, lt1.conj(), axes=(0, 0))
    # lv axes: 0: mps2 bond, 1: physical leg, 2: mps1 bond
    lv = np.tensordot(lv, lt2, axes=((0, 1), (0, 1)))
    # lv axes: 0: mps1 bond, 1: mps2 bond
    return lv 

Example 44

def _eig_rightvec_add_mps(rv, lt1, lt2):
    """Add one column to the right vector (MPS version)"""
    # rv axes: 0: mps1 bond, 1: mps2 bond
    rv = np.tensordot(rv, lt1.conj(), axes=(0, 2))
    # rv axes: 0: mps2 bond, 1: mps1 bond, 2: physical leg
    rv = np.tensordot(rv, lt2, axes=((0, 2), (2, 1)))
    # rv axes: 0: mps1 bond, 1: mps2 bond
    return rv 

Example 45

def dot(mpa1, mpa2, axes=(-1, 0), astype=None):
    """Compute the matrix product representation of the contraction of ``a``
        and ``b`` over the given axes. [:ref:`Sch11 <Sch11>`, Sec. 4.2]

    :param mpa1, mpa2: Factors as MPArrays

    :param axes: Tuple ``(ax1, ax2)`` where ``ax1`` (``ax2``) is a single
        physical leg number or sequence of physical leg numbers
        referring to ``mpa1`` (``mpa2``). The first (second, etc) entries
        of ``ax1`` and ``ax2`` will be contracted. Very similar to the
        ``axes`` argument for :func:`numpy.tensordot()`.
        (default: ``(-1, 0)``)

    .. note:: Note that the default value of ``axes`` is different compared to
              :func:`numpy.tensordot`.

    :param astype: Return type. If ``None``, use the type of ``mpa1``

    :returns: Dot product of the physical arrays

    """
    assert len(mpa1) == len(mpa2), \
        "Length is not equal: {} != {}".format(len(mpa1), len(mpa2))

    # adapt the axes from physical to true legs
    if isinstance(axes[0], collections.Sequence):
        axes = tuple(tuple(ax + 1 if ax >= 0 else ax - 1 for ax in axes2)
                     for axes2 in axes)
    else:
        axes = tuple(ax + 1 if ax >= 0 else ax - 1 for ax in axes)

    ltens = [_local_dot(l, r, axes) for l, r in zip(mpa1.lt, mpa2.lt)]

    if astype is None:
        astype = type(mpa1)
    return astype(ltens) 

Example 46

def _local_dot(ltens_l, ltens_r, axes):
    """Computes the local tensors of a dot product `dot(l, r)`.

    Besides computing the normal dot product, this function rearranges the
    virtual legs in such a way that the result is a valid local tensor again.

    :param ltens_l: Array with `ndim > 1`
    :param ltens_r: Array with `ndim > 1`
    :param axes: Axes to compute dot product using the convention of
        :func:`numpy.tensordot()`. Note that these correspond to the true
        (and not the just the physical) legs of the local tensors
    :returns: Correct local tensor representation

    """
    # number of contracted legs need to be the same
    clegs_l = len(axes[0]) if isinstance(axes[0], collections.Sequence) else 1
    clegs_r = len(axes[1]) if isinstance(axes[0], collections.Sequence) else 1
    assert clegs_l == clegs_r, \
        "Number of contracted legs differ: {} != {}".format(clegs_l, clegs_r)
    res = np.tensordot(ltens_l, ltens_r, axes=axes)
    # Rearrange the virtual-dimension legs
    res = np.rollaxis(res, ltens_l.ndim - clegs_l, 1)
    res = np.rollaxis(res, ltens_l.ndim - clegs_l,
                      ltens_l.ndim + ltens_r.ndim - clegs_l - clegs_r - 1)
    return res.reshape((ltens_l.shape[0] * ltens_r.shape[0], ) +
                       res.shape[2:-2] +
                       (ltens_l.shape[-1] * ltens_r.shape[-1],)) 

Example 47

def _adapt_to_add_r(rightvec, compr_lten, tgt_lten):
    """Add one column to the right vector.

    :param rightvec: existing right vector
        It has two indices: `compr_mps_bond` and `tgt_mps_bond`

    :param compr_lten: Local tensor of the compressed MPS
    :param tgt_lten: Local tensor of the target MPS


    Construct R from [:ref:`Sch11 <Sch11>`, Fig. 27, p. 48]. See comments in
    :func:`_adapt_to_add_l()` for further details.

    .. todo:: Adapt tensor leg names.

    """
    rightvec_names = ('compr_bond', 'tgt_bond')
    compr_names = ('compr_left_bond', 'compr_phys', 'compr_right_bond')
    tgt_names = ('tgt_left_bond', 'tgt_phys', 'tgt_right_bond')
    rightvec = named_ndarray(rightvec, rightvec_names)
    compr_lten = named_ndarray(compr_lten, compr_names)
    tgt_lten = named_ndarray(tgt_lten, tgt_names)

    contract_compr_mps = (('compr_bond', 'compr_right_bond'),)
    rightvec = rightvec.tensordot(compr_lten, contract_compr_mps)

    contract_tgt_mps = (
        ('compr_phys', 'tgt_phys'),
        ('tgt_bond', 'tgt_right_bond'))
    rightvec = rightvec.tensordot(tgt_lten.conj(), contract_tgt_mps)
    rename = (
        ('compr_left_bond', 'compr_bond'),
        ('tgt_left_bond', 'tgt_bond'))
    rightvec = rightvec.rename(rename)

    rightvec = rightvec.to_array(rightvec_names)
    return rightvec 

Example 48

def matdot(A, B, axes=((-1,), (0,))):
    """np.tensordot with sane defaults for matrix multiplication"""
    return np.tensordot(A, B, axes=axes) 

Example 49

def pmps_dm_to_array(pmps, global_=False):
    """Convert PMPS to full array representation of the density matrix

    The runtime of this method scales with D**3 instead of D**6 where
    D is the rank and D**6 is the scaling of using :func:`pmps_to_mpo`
    and :func:`to_array`. This is useful for obtaining reduced states
    of a PMPS on non-consecutive sites, as normalizing before using
    :func:`pmps_to_mpo` may not be sufficient to reduce the rank
    in that case.

    .. note:: The resulting array will have dimension-1 physical legs removed.

    """
    out = np.ones((1, 1, 1))
    # Axes: 0 phys, 1 upper rank, 2 lower rank
    for lt in pmps.lt:
        out = np.tensordot(out, lt, axes=(1, 0))
        # Axes: 0 phys, 1 lower rank, 2 phys, 3 anc, 4 upper rank
        out = np.tensordot(out, lt.conj(), axes=((1, 3), (0, 2)))
        # Axes: 0 phys, 1 phys, 2 upper rank, 3 phys, 4 lower rank
        out = np.rollaxis(out, 3, 2)
        # Axes: 0 phys, 1 phys, 2 phys, 3 upper bound, 4 lower rank
        out = out.reshape((-1, out.shape[3], out.shape[4]))
        # Axes: 0 phys, 1 upper rank, 2 lower rank
    out_shape = [dim for dim, _ in pmps.shape for rep in (1, 2) if dim > 1]
    out = out.reshape(out_shape)
    if global_:
        assert len(set(out_shape)) == 1
        out = local_to_global(out, sites=len(out_shape) // 2)
    return out 

Example 50

def test_chain(nr_sites, local_dim, rank, rgen, dtype):
    # This test produces at most `nr_sites` by tensoring two
    # MPOs. This doesn't work for :code:`nr_sites = 1`.
    if nr_sites < 2:
        return

    # NOTE: Everything here is in local form!!!
    mpo = factory.random_mpa(nr_sites // 2, (local_dim, local_dim), rank,
                             randstate=rgen, dtype=dtype)
    op = mpo.to_array()

    # Test with 2-factors with full form
    mpo_double = mp.chain((mpo, mpo))
    op_double = np.tensordot(op, op, axes=(tuple(), ) * 2)
    assert len(mpo_double) == 2 * len(mpo)
    assert_array_almost_equal(op_double, mpo_double.to_array())
    assert_array_equal(mpo_double.ranks, mpo.ranks + (1,) + mpo.ranks)
    assert mpo.dtype == dtype

    # Test 3-factors iteratively (since full form would be too large!!
    diff = mp.chain((mpo, mpo, mpo)) - mp.chain((mpo, mp.chain((mpo, mpo))))
    diff.canonicalize()
    assert len(diff) == 3 * len(mpo)
    assert mp.norm(diff) < 1e-6


# local_dim, rank 
点赞