The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def pformat(obj, indent=0, depth=3): if 'numpy' in sys.modules: import numpy as np print_options = np.get_printoptions() np.set_printoptions(precision=6, threshold=64, edgeitems=1) else: print_options = None out = pprint.pformat(obj, depth=depth, indent=indent) if print_options: np.set_printoptions(**print_options) return out ############################################################################### # class `Logger` ###############################################################################
Example 2
def after_run(self, run_context, run_values): global_episode = run_values.results['global_episode'] if can_run_hook(run_context): if self._timer.should_trigger_for_episode(global_episode): original = np.get_printoptions() np.set_printoptions(suppress=True) elapsed_secs, _ = self._timer.update_last_triggered_episode(global_episode) if self._formatter: logging.info(self._formatter(run_values.results)) else: stats = [] for tag in self._tag_order: stats.append("%s = %s" % (tag, run_values.results[tag])) if elapsed_secs is not None: logging.info("%s (%.3f sec)", ", ".join(stats), elapsed_secs) else: logging.info("%s", ", ".join(stats)) np.set_printoptions(**original)
Example 3
def pformat(obj, indent=0, depth=3): if 'numpy' in sys.modules: import numpy as np print_options = np.get_printoptions() np.set_printoptions(precision=6, threshold=64, edgeitems=1) else: print_options = None out = pprint.pformat(obj, depth=depth, indent=indent) if print_options: np.set_printoptions(**print_options) return out ############################################################################### # class `Logger` ###############################################################################
Example 4
def np_printoptions(**kwargs): """Context manager to temporarily set numpy print options.""" old = np.get_printoptions() np.set_printoptions(**kwargs) yield np.set_printoptions(**old)
Example 5
def setUp(self): self.oldopts = np.get_printoptions()
Example 6
def printoptions(*args, **kwargs): original = np.get_printoptions() np.set_printoptions(*args, **kwargs) try: yield finally: np.set_printoptions(**original)
Example 7
def compute_mean(self, file_list, start_index, end_index): logger = logging.getLogger('feature_normalisation') local_feature_dimension = end_index - start_index mean_vector = numpy.zeros((1, local_feature_dimension)) all_frame_number = 0 io_funcs = HTKFeat_read() for file_name in file_list: features, current_frame_number = io_funcs.getall(file_name) # io_funcs = HTK_Parm_IO() # io_funcs.read_htk(file_name) # features = io_funcs.data # current_frame_number = io_funcs.n_samples mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number mean_vector /= float(all_frame_number) # setting the print options in this way seems to break subsequent printing of numpy float32 types # no idea what is going on - removed until this can be solved # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('computed mean vector of length %d :' % mean_vector.shape[1] ) logger.info(' mean: %s' % mean_vector) # restore the print options # numpy.set_printoptions(po) self.mean_vector = mean_vector return mean_vector
Example 8
def compute_std(self, file_list, mean_vector, start_index, end_index): logger = logging.getLogger('feature_normalisation') local_feature_dimension = end_index - start_index std_vector = numpy.zeros((1, self.feature_dimension)) all_frame_number = 0 io_funcs = HTKFeat_read() for file_name in file_list: features, current_frame_number = io_funcs.getall(file_name) mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1)) std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number std_vector /= float(all_frame_number) std_vector = std_vector ** 0.5 # setting the print options in this way seems to break subsequent printing of numpy float32 types # no idea what is going on - removed until this can be solved # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('computed std vector of length %d' % std_vector.shape[1] ) logger.info(' std: %s' % std_vector) # restore the print options # numpy.set_printoptions(po) self.std_vector = std_vector return std_vector
Example 9
def printoptions(*args, **kwargs): original = numpy.get_printoptions() numpy.set_printoptions(*args, **kwargs) yield numpy.set_printoptions(**original)
Example 10
def find_min_max_values(self, in_file_list): logger = logging.getLogger("acoustic_norm") file_number = len(in_file_list) min_value_matrix = numpy.zeros((file_number, self.feature_dimension)) max_value_matrix = numpy.zeros((file_number, self.feature_dimension)) io_funcs = BinaryIOCollection() for i in range(file_number): features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension) temp_min = numpy.amin(features, axis = 0) temp_max = numpy.amax(features, axis = 0) min_value_matrix[i, ] = temp_min; max_value_matrix[i, ] = temp_max; self.min_vector = numpy.amin(min_value_matrix, axis = 0) self.max_vector = numpy.amax(max_value_matrix, axis = 0) self.min_vector = numpy.reshape(self.min_vector, (1, self.feature_dimension)) self.max_vector = numpy.reshape(self.max_vector, (1, self.feature_dimension)) # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('across %d files found min/max values of length %d:' % (file_number,self.feature_dimension) ) logger.info(' min: %s' % self.min_vector) logger.info(' max: %s' % self.max_vector) # restore the print options # numpy.set_printoptions(po)
Example 11
def compute_mean(self, file_list): logger = logging.getLogger("acoustic_norm") mean_vector = numpy.zeros((1, self.feature_dimension)) all_frame_number = 0 io_funcs = BinaryIOCollection() for file_name in file_list: features = io_funcs.load_binary_file(file_name, self.feature_dimension) current_frame_number = features.size // self.feature_dimension mean_vector += numpy.reshape(numpy.sum(features, axis=0), (1, self.feature_dimension)) all_frame_number += current_frame_number mean_vector /= float(all_frame_number) # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('computed mean vector of length %d :' % mean_vector.shape[1] ) logger.info(' mean: %s' % mean_vector) # restore the print options # numpy.set_printoptions(po) return mean_vector
Example 12
def find_min_max_values(self, in_file_list, start_index, end_index): local_feature_dimension = end_index - start_index file_number = len(in_file_list) min_value_matrix = numpy.zeros((file_number, local_feature_dimension)) max_value_matrix = numpy.zeros((file_number, local_feature_dimension)) io_funcs = BinaryIOCollection() for i in range(file_number): features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension) temp_min = numpy.amin(features[:, start_index:end_index], axis = 0) temp_max = numpy.amax(features[:, start_index:end_index], axis = 0) min_value_matrix[i, ] = temp_min; max_value_matrix[i, ] = temp_max; self.min_vector = numpy.amin(min_value_matrix, axis = 0) self.max_vector = numpy.amax(max_value_matrix, axis = 0) self.min_vector = numpy.reshape(self.min_vector, (1, local_feature_dimension)) self.max_vector = numpy.reshape(self.max_vector, (1, local_feature_dimension)) # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) self.logger.info('found min/max values of length %d:' % local_feature_dimension) self.logger.info(' min: %s' % self.min_vector) self.logger.info(' max: %s' % self.max_vector) # restore the print options # numpy.set_printoptions(po)
Example 13
def compute_mean(self, file_list, start_index, end_index): local_feature_dimension = end_index - start_index mean_vector = numpy.zeros((1, local_feature_dimension)) all_frame_number = 0 io_funcs = BinaryIOCollection() for file_name in file_list: features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension) mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number mean_vector /= float(all_frame_number) # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) self.logger.info('computed mean vector of length %d :' % mean_vector.shape[1] ) self.logger.info(' mean: %s' % mean_vector) # restore the print options # numpy.set_printoptions(po) return mean_vector
Example 14
def compute_std(self, file_list, mean_vector, start_index, end_index): local_feature_dimension = end_index - start_index std_vector = numpy.zeros((1, self.feature_dimension)) all_frame_number = 0 io_funcs = BinaryIOCollection() for file_name in file_list: features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension) mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1)) std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number std_vector /= float(all_frame_number) std_vector = std_vector ** 0.5 # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) self.logger.info('computed std vector of length %d' % std_vector.shape[1] ) self.logger.info(' std: %s' % std_vector) # restore the print options # numpy.set_printoptions(po) return std_vector
Example 15
def compute_mean(self, file_list, start_index, end_index): logger = logging.getLogger('feature_normalisation') local_feature_dimension = end_index - start_index mean_vector = numpy.zeros((1, local_feature_dimension)) all_frame_number = 0 io_funcs = BinaryIOCollection() for file_name in file_list: features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension) mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number mean_vector /= float(all_frame_number) # setting the print options in this way seems to break subsequent printing of numpy float32 types # no idea what is going on - removed until this can be solved # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('computed mean vector of length %d :' % mean_vector.shape[1] ) logger.info(' mean: %s' % mean_vector) # restore the print options # numpy.set_printoptions(po) self.mean_vector = mean_vector return mean_vector
Example 16
def compute_std(self, file_list, mean_vector, start_index, end_index): logger = logging.getLogger('feature_normalisation') local_feature_dimension = end_index - start_index std_vector = numpy.zeros((1, self.feature_dimension)) all_frame_number = 0 io_funcs = BinaryIOCollection() for file_name in file_list: features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension) mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1)) std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number std_vector /= float(all_frame_number) std_vector = std_vector ** 0.5 # setting the print options in this way seems to break subsequent printing of numpy float32 types # no idea what is going on - removed until this can be solved # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('computed std vector of length %d' % std_vector.shape[1] ) logger.info(' std: %s' % std_vector) # restore the print options # numpy.set_printoptions(po) self.std_vector = std_vector return std_vector
Example 17
def test_precision(): """test various values for float_precision.""" f = PlainTextFormatter() nt.assert_equal(f(pi), repr(pi)) f.float_precision = 0 if numpy: po = numpy.get_printoptions() nt.assert_equal(po['precision'], 0) nt.assert_equal(f(pi), '3') f.float_precision = 2 if numpy: po = numpy.get_printoptions() nt.assert_equal(po['precision'], 2) nt.assert_equal(f(pi), '3.14') f.float_precision = '%g' if numpy: po = numpy.get_printoptions() nt.assert_equal(po['precision'], 2) nt.assert_equal(f(pi), '3.14159') f.float_precision = '%e' nt.assert_equal(f(pi), '3.141593e+00') f.float_precision = '' if numpy: po = numpy.get_printoptions() nt.assert_equal(po['precision'], 8) nt.assert_equal(f(pi), repr(pi))
Example 18
def __repr__(self): """ FloatArrayParameter needs to "truncate" the array by temporarily overriding np.set_printoptions """ opt = np.get_printoptions() # <Parameter:_qualifier= takes 13+len(qualifier) characters np.set_printoptions(threshold=8, edgeitems=3, linewidth=opt['linewidth']-(13+len(self.qualifier))) repr_ = super(FloatArrayParameter, self).__repr__() np.set_printoptions(**opt) return repr_
Example 19
def __str__(self): """ FloatArrayParameter needs to "truncate" the array by temporarily overriding np.set_printoptions """ opt = np.get_printoptions() # Value:_ takes 7 characters np.set_printoptions(threshold=8, edgeitems=3, linewidth=opt['linewidth']-7) str_ = super(FloatArrayParameter, self).__str__() np.set_printoptions(**opt) return str_
Example 20
def to_string_short(self): """ see also :meth:`to_string` :return: a shorter abreviated string reprentation of the parameter """ opt = np.get_printoptions() np.set_printoptions(threshold=8, edgeitems=3, linewidth=opt['linewidth']-len(self.uniquetwig)-2) str_ = super(FloatArrayParameter, self).to_string_short() np.set_printoptions(**opt) return str_
Example 21
def __repr__(self): """ IntArrayParameter needs to "truncate" the array by temporarily overriding np.set_printoptions """ opt = np.get_printoptions() # <Parameter:_qualifier= takes 13+len(qualifier) characters np.set_printoptions(threshold=8, edgeitems=3, linewidth=opt['linewidth']-(13+len(self.qualifier))) repr_ = super(IntArrayParameter, self).__repr__() np.set_printoptions(**opt) return repr_
Example 22
def __str__(self): """ IntArrayParameter needs to "truncate" the array by temporarily overriding np.set_printoptions """ opt = np.get_printoptions() # Value:_ takes 7 characters np.set_printoptions(threshold=8, edgeitems=3, linewidth=opt['linewidth']-7) str_ = super(IntArrayParameter, self).__str__() np.set_printoptions(**opt) return str_
Example 23
def setUp(self): self.oldopts = np.get_printoptions()
Example 24
def printoptions(*args, **kwargs): original = numpy.get_printoptions() numpy.set_printoptions(*args, **kwargs) yield numpy.set_printoptions(**original)
Example 25
def find_min_max_values(self, in_file_list): logger = logging.getLogger("acoustic_norm") file_number = len(in_file_list) min_value_matrix = numpy.zeros((file_number, self.feature_dimension)) max_value_matrix = numpy.zeros((file_number, self.feature_dimension)) io_funcs = BinaryIOCollection() for i in xrange(file_number): features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension) temp_min = numpy.amin(features, axis = 0) temp_max = numpy.amax(features, axis = 0) min_value_matrix[i, ] = temp_min; max_value_matrix[i, ] = temp_max; self.min_vector = numpy.amin(min_value_matrix, axis = 0) self.max_vector = numpy.amax(max_value_matrix, axis = 0) self.min_vector = numpy.reshape(self.min_vector, (1, self.feature_dimension)) self.max_vector = numpy.reshape(self.max_vector, (1, self.feature_dimension)) # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('across %d files found min/max values of length %d:' % (file_number,self.feature_dimension) ) logger.info(' min: %s' % self.min_vector) logger.info(' max: %s' % self.max_vector) # restore the print options # numpy.set_printoptions(po)
Example 26
def compute_std(self, file_list, mean_vector): logger = logging.getLogger("acoustic_norm") std_vector = numpy.zeros((1, self.feature_dimension)) all_frame_number = 0 io_funcs = BinaryIOCollection() for file_name in file_list: features = io_funcs.load_binary_file(file_name, self.feature_dimension) current_frame_number = features.size / self.feature_dimension mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1)) std_vector += numpy.reshape(numpy.sum((features - mean_matrix) ** 2, axis=0), (1, self.feature_dimension)) all_frame_number += current_frame_number std_vector /= float(all_frame_number) std_vector = std_vector ** 0.5 # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('computed std vector of length %d' % std_vector.shape[1] ) logger.info(' std: %s' % std_vector) # restore the print options # numpy.set_printoptions(po) return std_vector
Example 27
def find_min_max_values(self, in_file_list, start_index, end_index): local_feature_dimension = end_index - start_index file_number = len(in_file_list) min_value_matrix = numpy.zeros((file_number, local_feature_dimension)) max_value_matrix = numpy.zeros((file_number, local_feature_dimension)) io_funcs = BinaryIOCollection() for i in xrange(file_number): features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension) temp_min = numpy.amin(features[:, start_index:end_index], axis = 0) temp_max = numpy.amax(features[:, start_index:end_index], axis = 0) min_value_matrix[i, ] = temp_min; max_value_matrix[i, ] = temp_max; self.min_vector = numpy.amin(min_value_matrix, axis = 0) self.max_vector = numpy.amax(max_value_matrix, axis = 0) self.min_vector = numpy.reshape(self.min_vector, (1, local_feature_dimension)) self.max_vector = numpy.reshape(self.max_vector, (1, local_feature_dimension)) # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) self.logger.info('found min/max values of length %d:' % local_feature_dimension) self.logger.info(' min: %s' % self.min_vector) self.logger.info(' max: %s' % self.max_vector) # restore the print options # numpy.set_printoptions(po)
Example 28
def compute_std(self, file_list, mean_vector, start_index, end_index): local_feature_dimension = end_index - start_index std_vector = numpy.zeros((1, self.feature_dimension)) all_frame_number = 0 io_funcs = BinaryIOCollection() for file_name in file_list: features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension) mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1)) std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number std_vector /= float(all_frame_number) std_vector = std_vector ** 0.5 # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) self.logger.info('computed std vector of length %d' % std_vector.shape[1] ) self.logger.info(' std: %s' % std_vector) # restore the print options # numpy.set_printoptions(po) return std_vector
Example 29
def compute_mean(self, file_list, start_index, end_index): logger = logging.getLogger('feature_normalisation') local_feature_dimension = end_index - start_index mean_vector = numpy.zeros((1, local_feature_dimension)) all_frame_number = 0 io_funcs = BinaryIOCollection() for file_name in file_list: features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension) mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number mean_vector /= float(all_frame_number) # setting the print options in this way seems to break subsequent printing of numpy float32 types # no idea what is going on - removed until this can be solved # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('computed mean vector of length %d :' % mean_vector.shape[1] ) logger.info(' mean: %s' % mean_vector) # restore the print options # numpy.set_printoptions(po) self.mean_vector = mean_vector return mean_vector
Example 30
def compute_std(self, file_list, mean_vector, start_index, end_index): logger = logging.getLogger('feature_normalisation') local_feature_dimension = end_index - start_index std_vector = numpy.zeros((1, self.feature_dimension)) all_frame_number = 0 io_funcs = BinaryIOCollection() for file_name in file_list: features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension) mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1)) std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number std_vector /= float(all_frame_number) std_vector = std_vector ** 0.5 # setting the print options in this way seems to break subsequent printing of numpy float32 types # no idea what is going on - removed until this can be solved # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('computed std vector of length %d' % std_vector.shape[1] ) logger.info(' std: %s' % std_vector) # restore the print options # numpy.set_printoptions(po) self.std_vector = std_vector return std_vector
Example 31
def find_min_max_values(self, in_file_list, start_index, end_index): local_feature_dimension = end_index - start_index file_number = len(in_file_list) min_value_matrix = numpy.zeros((file_number, local_feature_dimension)) max_value_matrix = numpy.zeros((file_number, local_feature_dimension)) io_funcs = BinaryIOCollection() for i in xrange(file_number): features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension) temp_min = numpy.amin(features[:, start_index:end_index], axis = 0) temp_max = numpy.amax(features[:, start_index:end_index], axis = 0) min_value_matrix[i, ] = temp_min; max_value_matrix[i, ] = temp_max; self.min_vector = numpy.amin(min_value_matrix, axis = 0) self.max_vector = numpy.amax(max_value_matrix, axis = 0) self.min_vector = numpy.reshape(self.min_vector, (1, local_feature_dimension)) self.max_vector = numpy.reshape(self.max_vector, (1, local_feature_dimension)) # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) self.logger.info('found min/max values of length %d:' % local_feature_dimension) self.logger.info(' min: %s' % self.min_vector) self.logger.info(' max: %s' % self.max_vector) # restore the print options # numpy.set_printoptions(po)
Example 32
def compute_mean(self, file_list, start_index, end_index): local_feature_dimension = end_index - start_index mean_vector = numpy.zeros((1, local_feature_dimension)) all_frame_number = 0 io_funcs = BinaryIOCollection() for file_name in file_list: features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension) mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number mean_vector /= float(all_frame_number) # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) self.logger.info('computed mean vector of length %d :' % mean_vector.shape[1] ) self.logger.info(' mean: %s' % mean_vector) # restore the print options # numpy.set_printoptions(po) return mean_vector
Example 33
def compute_mean(self, file_list, start_index, end_index): logger = logging.getLogger('feature_normalisation') local_feature_dimension = end_index - start_index mean_vector = numpy.zeros((1, local_feature_dimension)) all_frame_number = 0 io_funcs = BinaryIOCollection() for file_name in file_list: features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension) mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number mean_vector /= float(all_frame_number) # setting the print options in this way seems to break subsequent printing of numpy float32 types # no idea what is going on - removed until this can be solved # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('computed mean vector of length %d :' % mean_vector.shape[1] ) logger.info(' mean: %s' % mean_vector) # restore the print options # numpy.set_printoptions(po) self.mean_vector = mean_vector return mean_vector
Example 34
def compute_std(self, file_list, mean_vector, start_index, end_index): logger = logging.getLogger('feature_normalisation') local_feature_dimension = end_index - start_index std_vector = numpy.zeros((1, self.feature_dimension)) all_frame_number = 0 io_funcs = BinaryIOCollection() for file_name in file_list: features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension) mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1)) std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number std_vector /= float(all_frame_number) std_vector = std_vector ** 0.5 # setting the print options in this way seems to break subsequent printing of numpy float32 types # no idea what is going on - removed until this can be solved # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('computed std vector of length %d' % std_vector.shape[1] ) logger.info(' std: %s' % std_vector) # restore the print options # numpy.set_printoptions(po) self.std_vector = std_vector return std_vector
Example 35
def setUp(self): self.oldopts = np.get_printoptions()
Example 36
def compute_mean(self, file_list, start_index, end_index): logger = logging.getLogger('feature_normalisation') local_feature_dimension = end_index - start_index mean_vector = numpy.zeros((1, local_feature_dimension)) all_frame_number = 0 io_funcs = HTKFeat_read() for file_name in file_list: features, current_frame_number = io_funcs.getall(file_name) # io_funcs = HTK_Parm_IO() # io_funcs.read_htk(file_name) # features = io_funcs.data # current_frame_number = io_funcs.n_samples mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number mean_vector /= float(all_frame_number) # setting the print options in this way seems to break subsequent printing of numpy float32 types # no idea what is going on - removed until this can be solved # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('computed mean vector of length %d :' % mean_vector.shape[1] ) logger.info(' mean: %s' % mean_vector) # restore the print options # numpy.set_printoptions(po) self.mean_vector = mean_vector return mean_vector
Example 37
def compute_std(self, file_list, mean_vector, start_index, end_index): logger = logging.getLogger('feature_normalisation') local_feature_dimension = end_index - start_index std_vector = numpy.zeros((1, self.feature_dimension)) all_frame_number = 0 io_funcs = HTKFeat_read() for file_name in file_list: features, current_frame_number = io_funcs.getall(file_name) mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1)) std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number std_vector /= float(all_frame_number) std_vector = std_vector ** 0.5 # setting the print options in this way seems to break subsequent printing of numpy float32 types # no idea what is going on - removed until this can be solved # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('computed std vector of length %d' % std_vector.shape[1] ) logger.info(' std: %s' % std_vector) # restore the print options # numpy.set_printoptions(po) self.std_vector = std_vector return std_vector
Example 38
def printoptions(*args, **kwargs): original = numpy.get_printoptions() numpy.set_printoptions(*args, **kwargs) yield numpy.set_printoptions(**original)
Example 39
def find_min_max_values(self, in_file_list): logger = logging.getLogger("acoustic_norm") file_number = len(in_file_list) min_value_matrix = numpy.zeros((file_number, self.feature_dimension)) max_value_matrix = numpy.zeros((file_number, self.feature_dimension)) io_funcs = BinaryIOCollection() for i in xrange(file_number): features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension) temp_min = numpy.amin(features, axis = 0) temp_max = numpy.amax(features, axis = 0) min_value_matrix[i, ] = temp_min; max_value_matrix[i, ] = temp_max; self.min_vector = numpy.amin(min_value_matrix, axis = 0) self.max_vector = numpy.amax(max_value_matrix, axis = 0) self.min_vector = numpy.reshape(self.min_vector, (1, self.feature_dimension)) self.max_vector = numpy.reshape(self.max_vector, (1, self.feature_dimension)) # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('across %d files found min/max values of length %d:' % (file_number,self.feature_dimension) ) logger.info(' min: %s' % self.min_vector) logger.info(' max: %s' % self.max_vector) # restore the print options # numpy.set_printoptions(po)
Example 40
def find_min_max_values(self, in_file_list, start_index, end_index): local_feature_dimension = end_index - start_index file_number = len(in_file_list) min_value_matrix = numpy.zeros((file_number, local_feature_dimension)) max_value_matrix = numpy.zeros((file_number, local_feature_dimension)) io_funcs = BinaryIOCollection() for i in xrange(file_number): features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension) temp_min = numpy.amin(features[:, start_index:end_index], axis = 0) temp_max = numpy.amax(features[:, start_index:end_index], axis = 0) min_value_matrix[i, ] = temp_min; max_value_matrix[i, ] = temp_max; self.min_vector = numpy.amin(min_value_matrix, axis = 0) self.max_vector = numpy.amax(max_value_matrix, axis = 0) self.min_vector = numpy.reshape(self.min_vector, (1, local_feature_dimension)) self.max_vector = numpy.reshape(self.max_vector, (1, local_feature_dimension)) # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) self.logger.info('found min/max values of length %d:' % local_feature_dimension) self.logger.info(' min: %s' % self.min_vector) self.logger.info(' max: %s' % self.max_vector) # restore the print options # numpy.set_printoptions(po)
Example 41
def compute_mean(self, file_list, start_index, end_index): local_feature_dimension = end_index - start_index mean_vector = numpy.zeros((1, local_feature_dimension)) all_frame_number = 0 io_funcs = BinaryIOCollection() for file_name in file_list: features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension) mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number mean_vector /= float(all_frame_number) # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) self.logger.info('computed mean vector of length %d :' % mean_vector.shape[1] ) self.logger.info(' mean: %s' % mean_vector) # restore the print options # numpy.set_printoptions(po) return mean_vector
Example 42
def compute_std(self, file_list, mean_vector, start_index, end_index): local_feature_dimension = end_index - start_index std_vector = numpy.zeros((1, self.feature_dimension)) all_frame_number = 0 io_funcs = BinaryIOCollection() for file_name in file_list: features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension) mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1)) std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number std_vector /= float(all_frame_number) std_vector = std_vector ** 0.5 # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) self.logger.info('computed std vector of length %d' % std_vector.shape[1] ) self.logger.info(' std: %s' % std_vector) # restore the print options # numpy.set_printoptions(po) return std_vector
Example 43
def compute_mean(self, file_list, start_index, end_index): logger = logging.getLogger('feature_normalisation') local_feature_dimension = end_index - start_index mean_vector = numpy.zeros((1, local_feature_dimension)) all_frame_number = 0 io_funcs = BinaryIOCollection() for file_name in file_list: features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension) mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number mean_vector /= float(all_frame_number) # setting the print options in this way seems to break subsequent printing of numpy float32 types # no idea what is going on - removed until this can be solved # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('computed mean vector of length %d :' % mean_vector.shape[1] ) logger.info(' mean: %s' % mean_vector) # restore the print options # numpy.set_printoptions(po) self.mean_vector = mean_vector return mean_vector
Example 44
def compute_std(self, file_list, mean_vector, start_index, end_index): logger = logging.getLogger('feature_normalisation') local_feature_dimension = end_index - start_index std_vector = numpy.zeros((1, self.feature_dimension)) all_frame_number = 0 io_funcs = BinaryIOCollection() for file_name in file_list: features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension) mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1)) std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension)) all_frame_number += current_frame_number std_vector /= float(all_frame_number) std_vector = std_vector ** 0.5 # setting the print options in this way seems to break subsequent printing of numpy float32 types # no idea what is going on - removed until this can be solved # po=numpy.get_printoptions() # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4) logger.info('computed std vector of length %d' % std_vector.shape[1] ) logger.info(' std: %s' % std_vector) # restore the print options # numpy.set_printoptions(po) self.std_vector = std_vector return std_vector
Example 45
def _printoptions(*args, **kwargs): original = np.get_printoptions() np.set_printoptions(*args, **kwargs) yield np.set_printoptions(**original) # http://code.activestate.com/recipes/577586-converts-from-decimal-to-any-base-between-2-and-26/
Example 46
def setUp(self): self.oldopts = np.get_printoptions()
Example 47
def parse_numpy_printoption(kv_str): """Sets a single numpy printoption from a string of the form 'x=y'. See documentation on numpy.set_printoptions() for details about what values x and y can take. x can be any option listed there other than 'formatter'. Args: kv_str: A string of the form 'x=y', such as 'threshold=100000' Raises: argparse.ArgumentTypeError: If the string couldn't be used to set any nump printoption. """ k_v_str = kv_str.split("=", 1) if len(k_v_str) != 2 or not k_v_str[0]: raise argparse.ArgumentTypeError("'%s' is not in the form k=v." % kv_str) k, v_str = k_v_str printoptions = np.get_printoptions() if k not in printoptions: raise argparse.ArgumentTypeError("'%s' is not a valid printoption." % k) v_type = type(printoptions[k]) if v_type is type(None): raise argparse.ArgumentTypeError( "Setting '%s' from the command line is not supported." % k) try: v = (v_type(v_str) if v_type is not bool else flags.BooleanParser().Parse(v_str)) except ValueError as e: raise argparse.ArgumentTypeError(e.message) np.set_printoptions(**{k: v})
Example 48
def test_precision(): """test various values for float_precision.""" f = PlainTextFormatter() nt.assert_equal(f(pi), repr(pi)) f.float_precision = 0 if numpy: po = numpy.get_printoptions() nt.assert_equal(po['precision'], 0) nt.assert_equal(f(pi), '3') f.float_precision = 2 if numpy: po = numpy.get_printoptions() nt.assert_equal(po['precision'], 2) nt.assert_equal(f(pi), '3.14') f.float_precision = '%g' if numpy: po = numpy.get_printoptions() nt.assert_equal(po['precision'], 2) nt.assert_equal(f(pi), '3.14159') f.float_precision = '%e' nt.assert_equal(f(pi), '3.141593e+00') f.float_precision = '' if numpy: po = numpy.get_printoptions() nt.assert_equal(po['precision'], 8) nt.assert_equal(f(pi), repr(pi))
Example 49
def fullprint(*args, **kwargs): "https://gist.github.com/ZGainsforth/3a306084013633c52881" from pprint import pprint import numpy opt = numpy.get_printoptions() numpy.set_printoptions(threshold='nan') pprint(*args, **kwargs) numpy.set_printoptions(**opt)
Example 50
def printoptions(*args, **kwargs): """Context manager for temporarily setting NumPy print options. See http://stackoverflow.com/a/2891805/500098 """ original = np.get_printoptions() try: np.set_printoptions(*args, **kwargs) yield finally: np.set_printoptions(**original) # taken from https://code.activestate.com/recipes/577504/ as recommended by # https://docs.python.org/3.5/library/sys.html#sys.getsizeof