Python numpy.union1d() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def __init__(self, source, **params):
        #_Graph.__init__(self)
        self.is_static = False
        if isinstance(source, str):  # it is a file
            self._load(source, **params)
        else:  # source must be an EventQueue then
            # to do: read from event queue
            # should also get self.starts, ...
            pass
        self.t_start = params.get('t_start', np.min(self.starts))
        self.t_stop = params.get('t_stop', np.max(self.stops))
        # ToDo: Ideally only use self.all_nodes
        self.all_nodes = list(np.union1d(self.node1s, self.node2s))
        all_nodes = list(np.union1d(self.node1s, self.node2s))
        n = len(self.all_nodes)

        def get_id(an_id):
            return all_nodes.index(an_id)
        v_get_id = np.vectorize(get_id)

        self.node1s = v_get_id(self.node1s)
        self.node2s = v_get_id(self.node2s)
        # now we need to remap the node ids
        _Graph.__init__(self, n=n) 

Example 2

def uunion1d(arr1, arr2):
    """Find the union of two arrays.

    A wrapper around numpy.intersect1d that preserves units.  All input arrays
    must have the same units.  See the documentation of numpy.intersect1d for
    full details.

    Examples
    --------
    >>> A = yt.YTArray([1, 2, 3], 'cm')
    >>> B = yt.YTArray([2, 3, 4], 'cm')
    >>> uunion1d(A, B)
    YTArray([ 1., 2., 3., 4.]) cm

    """
    v = np.union1d(arr1, arr2)
    v = validate_numpy_wrapper_units(v, [arr1, arr2])
    return v 

Example 3

def __apply_func(self, other, func_name):

        if isinstance(other, Signal):
            time = np.union1d(self.timestamps, other.timestamps)
            s = self.interp(time).samples
            o = other.interp(time).samples
            func = getattr(s, func_name)
            s = func(o)
        elif other is None:
            s = self.samples
            time = self.timestamps
        else:
            func = getattr(self.samples, func_name)
            s = func(other)
            time = self.timestamps
        return Signal(s,
                      time,
                      self.unit,
                      self.name,
                      self.info) 

Example 4

def test_confusion_matrix():
    # Defining numpy implementation of confusion matrix
    def numpy_conf_mat(actual, pred):
        order = numpy.union1d(actual, pred)
        colA = numpy.matrix(actual).T
        colP = numpy.matrix(pred).T
        oneHotA = colA.__eq__(order).astype('int64')
        oneHotP = colP.__eq__(order).astype('int64')
        conf_mat = numpy.dot(oneHotA.T, oneHotP)
        conf_mat = numpy.asarray(conf_mat)
        return [conf_mat, order]

    x = tensor.vector()
    y = tensor.vector()
    f = theano.function([x, y], confusion_matrix(x, y))
    list_inputs = [[[0, 1, 2, 1, 0], [0, 0, 2, 1, 2]],
                   [[2, 0, 2, 2, 0, 1], [0, 0, 2, 2, 0, 2]]]

    for case in list_inputs:
        a = numpy.asarray(case[0])
        b = numpy.asarray(case[1])
        out_exp = numpy_conf_mat(a, b)
        outs = f(case[0], case[1])
        for exp, out in zip(out_exp, outs):
            utt.assert_allclose(exp, out) 

Example 5

def subtract(curve1, curve2, def_val=0):
    """
    Function calculates difference between curve1 and curve2
    and returns new object which domain is an union
    of curve1 and curve2 domains
    Returned object is of type type(curve1)
    and has same metadata as curve1 object

    :param curve1: first curve to calculate the difference
    :param curve2: second curve to calculate the difference
    :param def_val: default value for points that cannot be interpolated
    :return: new object of type type(curve1) with element-wise difference
    (using interpolation if necessary)
    """
    coord1 = np.union1d(curve1.x, curve2.x)
    y1 = curve1.evaluate_at_x(coord1, def_val)
    y2 = curve2.evaluate_at_x(coord1, def_val)
    coord2 = y1 - y2
    # the below is explained at the end of curve.Curve.change_domain()
    obj = curve1.__class__(np.dstack((coord1, coord2))[0], **curve1.__dict__['metadata'])
    return obj 

Example 6

def relabelAllSequences(zBySeq, specialStateIDs):
    ''' Relabel all sequences in provided list.

    Returns
    -------
    zBySeq, relabelled so that each label in specialStateIDs
            now corresponds to ids 0, 1, 2, ... L-1
            and all other labels not in that set get ids L, L+1, ...
    '''
    import copy
    zBySeq = copy.deepcopy(zBySeq)
    L = len(specialStateIDs)

    uniqueVals = []
    for z in zBySeq:
        z += 1000
        for kID, kVal in enumerate(specialStateIDs):
            z[z == 1000 + kVal] = -1000 + kID
            uniqueVals = np.union1d(uniqueVals, np.unique(z))

    for z in zBySeq:
        for kID, kVal in enumerate(sorted(uniqueVals)):
            z[z == kVal] = kID

    return zBySeq 

Example 7

def multi_x_reader(self, spc_file):
        # use x-values as domain
        all_x = []
        for sub in spc_file.sub:
            x = sub.x
            # assume values in x do not repeat
            all_x = np.union1d(all_x, x)
        domain = Orange.data.Domain([Orange.data.ContinuousVariable.make("%f" % f) for f in all_x], None)

        instances = []
        for sub in spc_file.sub:
            x, y = sub.x, sub.y
            newinstance = np.ones(len(all_x))*np.nan
            ss = np.searchsorted(all_x, x)  # find positions to set
            newinstance[ss] = y
            instances.append(newinstance)

        y_data = np.array(instances).astype(float, order='C')
        return Orange.data.Table.from_numpy(domain, y_data) 

Example 8

def pairwiseScore(inFile_1, inFile_2, logDebug, outFile):
    (snpCHR1, snpPOS1, snpGT1, snpWEI1, DPmean1) = parseInput(inFile = inFile_1, logDebug = logDebug)
    (snpCHR2, snpPOS2, snpGT2, snpWEI2, DPmean2) = parseInput(inFile = inFile_2, logDebug = logDebug)
    snpmatch_stats = {}
    unique_1, unique_2, common, scores = 0, 0, 0, 0
    chrs = np.union1d(snpCHR1, snpCHR2)
    for i in chrs:
        perchrTarPosInd1 = np.where(snpCHR1 == i)[0]
        perchrTarPosInd2 = np.where(snpCHR2 == i)[0]
        log.info("Analysing chromosome %s positions", i)
        perchrtarSNPpos1 = snpPOS1[perchrTarPosInd1]
        perchrtarSNPpos2 = snpPOS2[perchrTarPosInd2]
        matchedAccInd1 = np.where(np.in1d(perchrtarSNPpos1, perchrtarSNPpos2))[0]
        matchedAccInd2 = np.where(np.in1d(perchrtarSNPpos2, perchrtarSNPpos1))[0]
        unique_1 = unique_1 + len(perchrTarPosInd1) - len(matchedAccInd1)
        unique_2 = unique_2 + len(perchrTarPosInd2) - len(matchedAccInd2)
        common = common + len(matchedAccInd1)
        scores = scores + np.sum(np.array(snpGT1[matchedAccInd1] == snpGT2[matchedAccInd2], dtype = int))
    snpmatch_stats['unique'] = {"%s" % os.path.basename(inFile_1): [float(unique_1)/len(snpCHR1), len(snpCHR1)], "%s" % os.path.basename(inFile_2): [float(unique_2)/len(snpCHR2), len(snpCHR2)]}
    snpmatch_stats['matches'] = [float(scores)/common, common]
    if not outFile:
        outFile = "genotyper"
    log.info("writing output in a file: %s" % outFile + ".matches.json")
    with open(outFile + ".matches.json", "w") as out_stats:
        out_stats.write(json.dumps(snpmatch_stats))
    log.info("finished!") 

Example 9

def union1d(ar1, ar2):
    """
    Find the union of two arrays.

    Return the unique, sorted array of values that are in either of the two
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays. They are flattened if they are not already 1D.

    Returns
    -------
    union1d : ndarray
        Unique, sorted union of the input arrays.

    See Also
    --------
    numpy.lib.arraysetops : Module with a number of other functions for
                            performing set operations on arrays.

    Examples
    --------
    >>> np.union1d([-1, 0, 1], [-2, 0, 2])
    array([-2, -1,  0,  1,  2])

    To find the union of more than two arrays, use functools.reduce:

    >>> from functools import reduce
    >>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
    array([1, 2, 3, 4, 6])
    """
    return unique(np.concatenate((ar1, ar2))) 

Example 10

def intersect_sim(array_1, array_2):
    """Calculate the simiarity of two arrays
    by using intersection / union
    """
    sim = float(np.intersect1d(array_1, array_2).size) / \
        float(np.union1d(array_1, array_2).size)
    return sim 

Example 11

def union_classes(eval_segm, gt_segm):
    eval_cl, _ = extract_classes(eval_segm)
    gt_cl, _   = extract_classes(gt_segm)

    cl = np.union1d(eval_cl, gt_cl)
    n_cl = len(cl)

    return cl, n_cl 

Example 12

def __init__(self, edges):
		self.edges = edges
		self.nodes = Nodes(len(numpy.union1d(self.edges.begin, self.edges.end)))
		for i in xrange(len(self.edges)):
			j = i if True else 0
			self.nodes.outgoing[self.edges.begin[i]].append(j)
			self.nodes.incoming[self.edges.end  [i]].append(j) 

Example 13

def union1d(ar1, ar2):
    """
    Find the union of two arrays.

    Return the unique, sorted array of values that are in either of the two
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays. They are flattened if they are not already 1D.

    Returns
    -------
    union1d : ndarray
        Unique, sorted union of the input arrays.

    See Also
    --------
    numpy.lib.arraysetops : Module with a number of other functions for
                            performing set operations on arrays.

    Examples
    --------
    >>> np.union1d([-1, 0, 1], [-2, 0, 2])
    array([-2, -1,  0,  1,  2])

    To find the union of more than two arrays, use functools.reduce:

    >>> from functools import reduce
    >>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
    array([1, 2, 3, 4, 6])
    """
    return unique(np.concatenate((ar1, ar2))) 

Example 14

def test_numpy_wrappers():
    a1 = YTArray([1, 2, 3], 'cm')
    a2 = YTArray([2, 3, 4, 5, 6], 'cm')
    catenate_answer = [1, 2, 3, 2, 3, 4, 5, 6]
    intersect_answer = [2, 3]
    union_answer = [1, 2, 3, 4, 5, 6]

    assert_array_equal(YTArray(catenate_answer, 'cm'), uconcatenate((a1, a2)))
    assert_array_equal(catenate_answer, np.concatenate((a1, a2)))

    assert_array_equal(YTArray(intersect_answer, 'cm'), uintersect1d(a1, a2))
    assert_array_equal(intersect_answer, np.intersect1d(a1, a2))

    assert_array_equal(YTArray(union_answer, 'cm'), uunion1d(a1, a2))
    assert_array_equal(union_answer, np.union1d(a1, a2)) 

Example 15

def test_boolean_spheres_overlap():
    r"""Test to make sure that boolean objects (spheres, overlap)
    behave the way we expect.

    Test overlapping spheres.
    """
    ds = fake_amr_ds()
    sp1 = ds.sphere([0.45, 0.45, 0.45], 0.15)
    sp2 = ds.sphere([0.55, 0.55, 0.55], 0.15)
    # Get indices of both.
    i1 = sp1["index","morton_index"]
    i2 = sp2["index","morton_index"]
    # Make some booleans
    bo1 = sp1 & sp2
    bo2 = sp1 - sp2
    bo3 = sp1 | sp2
    bo4 = ds.union([sp1, sp2])
    bo5 = ds.intersection([sp1, sp2])
    # Now make sure the indices also behave as we expect.
    lens = np.intersect1d(i1, i2)
    apple = np.setdiff1d(i1, i2)
    both = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, lens)
    assert_array_equal(b2, apple)
    assert_array_equal(b3, both)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = sp1 ^ sp2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 16

def test_boolean_regions_overlap():
    r"""Test to make sure that boolean objects (regions, overlap)
    behave the way we expect.

    Test overlapping regions.
    """
    ds = fake_amr_ds()
    re1 = ds.region([0.55]*3, [0.5]*3, [0.6]*3)
    re2 = ds.region([0.6]*3, [0.55]*3, [0.65]*3)
    # Get indices of both.
    i1 = re1["index","morton_index"]
    i2 = re2["index","morton_index"]
    # Make some booleans
    bo1 = re1 & re2
    bo2 = re1 - re2
    bo3 = re1 | re2
    bo4 = ds.union([re1, re2])
    bo5 = ds.intersection([re1, re2])
    # Now make sure the indices also behave as we expect.
    cube = np.intersect1d(i1, i2)
    bite_cube = np.setdiff1d(i1, i2)
    both = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, cube)
    assert_array_equal(b2, bite_cube)
    assert_array_equal(b3, both)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = re1 ^ re2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 17

def test_boolean_slices_overlap():
    r"""Test to make sure that boolean objects (slices, overlap)
    behave the way we expect.

    Test overlapping slices.
    """
    ds = fake_amr_ds()
    sl1 = ds.r[:,:,0.25]
    sl2 = ds.r[:,0.75,:]
    # Get indices of both.
    i1 = sl1["index","morton_index"]
    i2 = sl2["index","morton_index"]
    # Make some booleans
    bo1 = sl1 & sl2
    bo2 = sl1 - sl2
    bo3 = sl1 | sl2
    bo4 = ds.union([sl1, sl2])
    bo5 = ds.intersection([sl1, sl2])
    # Now make sure the indices also behave as we expect.
    line = np.intersect1d(i1, i2)
    orig = np.setdiff1d(i1, i2)
    both = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, line)
    assert_array_equal(b2, orig)
    assert_array_equal(b3, both)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = sl1 ^ sl2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 18

def union1d(ar1, ar2):
    """
    Find the union of two arrays.

    Return the unique, sorted array of values that are in either of the two
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays. They are flattened if they are not already 1D.

    Returns
    -------
    union1d : ndarray
        Unique, sorted union of the input arrays.

    See Also
    --------
    numpy.lib.arraysetops : Module with a number of other functions for
                            performing set operations on arrays.

    Examples
    --------
    >>> np.union1d([-1, 0, 1], [-2, 0, 2])
    array([-2, -1,  0,  1,  2])

    To find the union of more than two arrays, use functools.reduce:

    >>> from functools import reduce
    >>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
    array([1, 2, 3, 4, 6])
    """
    return unique(np.concatenate((ar1, ar2))) 

Example 19

def union1d(ar1, ar2):
    """
    Find the union of two arrays.

    Return the unique, sorted array of values that are in either of the two
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays. They are flattened if they are not already 1D.

    Returns
    -------
    union1d : ndarray
        Unique, sorted union of the input arrays.

    See Also
    --------
    numpy.lib.arraysetops : Module with a number of other functions for
                            performing set operations on arrays.

    Examples
    --------
    >>> np.union1d([-1, 0, 1], [-2, 0, 2])
    array([-2, -1,  0,  1,  2])

    To find the union of more than two arrays, use functools.reduce:

    >>> from functools import reduce
    >>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
    array([1, 2, 3, 4, 6])
    """
    return unique(np.concatenate((ar1, ar2))) 

Example 20

def _wmd(self, i, row, X_train):
        """Compute the WMD between training sample i and given test row.
        
        Assumes that `row` and train samples are sparse BOW vectors summing to 1.
        """
        union_idx = np.union1d(X_train[i].indices, row.indices) - 1
        W_minimal = self.W_embed[union_idx]
        W_dist = euclidean_distances(W_minimal)
        bow_i = X_train[i, union_idx].A.ravel()
        bow_j = row[:, union_idx].A.ravel()
        return emd(bow_i, bow_j, W_dist) 

Example 21

def union1d(ar1, ar2):
    """
    Find the union of two arrays.

    Return the unique, sorted array of values that are in either of the two
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays. They are flattened if they are not already 1D.

    Returns
    -------
    union1d : ndarray
        Unique, sorted union of the input arrays.

    See Also
    --------
    numpy.lib.arraysetops : Module with a number of other functions for
                            performing set operations on arrays.

    Examples
    --------
    >>> np.union1d([-1, 0, 1], [-2, 0, 2])
    array([-2, -1,  0,  1,  2])

    To find the union of more than two arrays, use functools.reduce:

    >>> from functools import reduce
    >>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
    array([1, 2, 3, 4, 6])
    """
    return unique(np.concatenate((ar1, ar2))) 

Example 22

def _match_score(predicted_biclustering, reference_biclustering, bicluster_attr):
    k = len(predicted_biclustering.biclusters)
    return sum(max(len(np.intersect1d(getattr(bp, bicluster_attr), getattr(bt, bicluster_attr))) /
        len(np.union1d(getattr(bp, bicluster_attr), getattr(bt, bicluster_attr)))
        for bt in reference_biclustering.biclusters)
        for bp in predicted_biclustering.biclusters) / k 

Example 23

def liu_wang_match_score(predicted_biclustering, reference_biclustering):
    """Liu & Wang match score.

    Reference
    ---------
    Liu, X., & Wang, L. (2006). Computing the maximum similarity bi-clusters of gene expression data.
    Bioinformatics, 23(1), 50-56.

    Horta, D., & Campello, R. J. G. B. (2014). Similarity measures for comparing biclusterings.
    IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(5), 942-954.

    Parameters
    ----------
    predicted_biclustering : biclustlib.model.Biclustering
        Predicted biclustering solution.

    reference_biclustering : biclustlib.model.Biclustering
        Reference biclustering solution.

    Returns
    -------
    lw_match_score : float
        Liu and Wang match score between 0.0 and 1.0.
    """
    check = check_biclusterings(predicted_biclustering, reference_biclustering)

    if isinstance(check, float):
        return check

    k = len(predicted_biclustering.biclusters)

    return sum(max((len(np.intersect1d(bp.rows, br.rows)) + len(np.intersect1d(bp.cols, br.cols))) /
        (len(np.union1d(bp.rows, br.rows)) + len(np.union1d(bp.cols, br.cols)))
        for br in reference_biclustering.biclusters)
        for bp in predicted_biclustering.biclusters) / k 

Example 24

def union1d(ar1, ar2):
    """
    Find the union of two arrays.

    Return the unique, sorted array of values that are in either of the two
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays. They are flattened if they are not already 1D.

    Returns
    -------
    union1d : ndarray
        Unique, sorted union of the input arrays.

    See Also
    --------
    numpy.lib.arraysetops : Module with a number of other functions for
                            performing set operations on arrays.

    Examples
    --------
    >>> np.union1d([-1, 0, 1], [-2, 0, 2])
    array([-2, -1,  0,  1,  2])

    To find the union of more than two arrays, use functools.reduce:

    >>> from functools import reduce
    >>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
    array([1, 2, 3, 4, 6])
    """
    return unique(np.concatenate((ar1, ar2))) 

Example 25

def crossGenotyper(args):
    ## Get the VCF file (filtered may be) generated by GATK.
    ## inputs:
    # 1) VCF file
    # 2) Parent1 and Parent2
    # 3) SNP matrix (hdf5 file)
    # 4) Bin length, default as 200Kbp
    # 5) Chromosome length
    log.info("loading genotype data for parents")
    if args['father'] is not None:
        log.info("input files: %s and %s" % (args['parents'], args['father']))
        if not os.path.isfile(args['parents']) and os.path.isfile(args['father']):
            die("either of the input files do not exists, please provide VCF/BED file for parent genotype information")
        (p1snpCHR, p1snpPOS, p1snpGT, p1snpWEI, p1DPmean) = snpmatch.parseInput(inFile = args['parents'], logDebug = args['logDebug'])
        (p2snpCHR, p2snpPOS, p2snpGT, p2snpWEI, p2DPmean) = snpmatch.parseInput(inFile = args['father'], logDebug = args['logDebug'])
        commonCHRs_ids = np.union1d(p1snpCHR, p2snpCHR)
        commonSNPsCHR = np.zeros(0, dtype=commonCHRs_ids.dtype)
        commonSNPsPOS = np.zeros(0, dtype=int)
        snpsP1 = np.zeros(0, dtype='int8')
        snpsP2 = np.zeros(0, dtype='int8')
        for i in commonCHRs_ids:
            perchrP1inds = np.where(p1snpCHR == i)[0]
            perchrP2inds = np.where(p2snpCHR == i)[0]
            perchrPositions = np.union1d(p1snpPOS[perchrP1inds], p2snpPOS[perchrP2inds])
            commonSNPsCHR = np.append(commonSNPsCHR, np.repeat(i, len(perchrPositions)))
            commonSNPsPOS = np.append(commonSNPsPOS, perchrPositions)
            perchrsnpsP1 = np.repeat(-1, len(perchrPositions)).astype('int8')
            perchrsnpsP2 = np.repeat(-1, len(perchrPositions)).astype('int8')
            perchrsnpsP1_inds = np.where(np.in1d(p1snpPOS[perchrP1inds], perchrPositions))[0]
            perchrsnpsP2_inds = np.where(np.in1d(p2snpPOS[perchrP2inds], perchrPositions))[0]
            snpsP1 = np.append(snpsP1, snpmatch.parseGT(p1snpGT[perchrsnpsP1_inds]))
            snpsP2 = np.append(snpsP2, snpmatch.parseGT(p2snpGT[perchrsnpsP2_inds]))
        log.info("done!")
    else:
        parents = args['parents']
        ## need to filter the SNPs present in C and M
        if not args['hdf5accFile']:
            snpmatch.die("needed a HDF5 genotype file and not specified")
        log.info("loading HDF5 file")
        g_acc = genotype.load_hdf5_genotype_data(args['hdf5accFile'])
        ## die if either parents are not in the dataset
        #import ipdb; ipdb.set_trace()
        try:
            indP1 = np.where(g_acc.accessions == parents.split("x")[0])[0][0]
            indP2 = np.where(g_acc.accessions == parents.split("x")[1])[0][0]
        except:
            snpmatch.die("parents are not in the dataset")
        snpsP1 = g_acc.snps[:,indP1]
        snpsP2 = g_acc.snps[:,indP2]
        commonSNPsCHR = np.array(g_acc.chromosomes)
        commonSNPsPOS = np.array(g_acc.positions)
        log.info("done!")
    log.info("running cross genotyper")
    crossGenotypeWindows(commonSNPsCHR, commonSNPsPOS, snpsP1, snpsP2, args['inFile'], args['binLen'], args['outFile'], args['logDebug']) 

Example 26

def test_boolean_cylinders_overlap():
    r"""Test to make sure that boolean objects (cylinders, overlap)
    behave the way we expect.

    Test overlapping cylinders.
    """
    ds = fake_amr_ds()
    cyl1 = ds.disk([0.45]*3, [1, 0, 0], 0.2, 0.2)
    cyl2 = ds.disk([0.55]*3, [1, 0, 0], 0.2, 0.2)
    # Get indices of both.
    i1 = cyl1["index","morton_index"]
    i2 = cyl2["index","morton_index"]
    # Make some booleans
    bo1 = cyl1 & cyl2
    bo2 = cyl1 - cyl2
    bo3 = cyl1 | cyl2
    bo4 = ds.union([cyl1, cyl2])
    bo5 = ds.intersection([cyl1, cyl2])
    # Now make sure the indices also behave as we expect.
    vlens = np.intersect1d(i1, i2)
    bite_disk = np.setdiff1d(i1, i2)
    both = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, vlens)
    assert_array_equal(b2, bite_disk)
    assert_array_equal(b3, both)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = cyl1 ^ cyl2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2))
    del ds 

Example 27

def test_boolean_mix_periodicity():
    r"""Test that a hybrid boolean region behaves as we expect.

    This also tests nested logic and that periodicity works.
    """
    ds = fake_amr_ds()
    re = ds.region([0.5]*3, [0.0]*3, [1]*3) # whole thing
    sp = ds.sphere([0.95]*3, 0.3) # wraps around
    cyl = ds.disk([0.05]*3, [1,1,1], 0.1, 0.4) # wraps around
    # Get original indices
    rei = re["index","morton_index"]
    spi = sp["index","morton_index"]
    cyli = cyl["index","morton_index"]
    # Make some booleans
    # whole box minux spherical bites at corners
    bo1 = re - sp
    # sphere plus cylinder
    bo2 = sp | cyl
    # a jumble, the region minus the sp+cyl
    bo3 = re - (sp | cyl)
    # Now make sure the indices also behave as we expect.
    bo4 = ds.union([re, sp, cyl])
    bo5 = ds.intersection([re, sp, cyl])
    expect = np.setdiff1d(rei, spi)
    ii = bo1["index","morton_index"]
    ii.sort()
    assert_array_equal(expect, ii)
    #
    expect = np.union1d(spi, cyli)
    ii = bo2["index","morton_index"]
    ii.sort()
    assert_array_equal(expect, ii)
    #
    expect = np.union1d(spi, cyli)
    expect = np.setdiff1d(rei, expect)
    ii = bo3["index","morton_index"]
    ii.sort()
    assert_array_equal(expect, ii)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    ii = np.union1d(np.union1d(rei, cyli), spi)
    ii.sort()
    assert_array_equal(ii, b4)
    ii = np.intersect1d(np.intersect1d(rei, cyli), spi)
    ii.sort()
    assert_array_equal(ii, b5)

    bo6 = (re ^ sp) ^ cyl
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(np.setxor1d(rei, spi), cyli)) 

Example 28

def test_boolean_ray_region_overlap():
    r"""Test to make sure that boolean objects (ray, region, overlap)
    behave the way we expect.

    Test overlapping ray and region. This also checks that the original 
    objects don't change as part of constructing the booleans.
    """
    ds = fake_amr_ds()
    re = ds.box([0.25]*3, [0.75]*3)
    ra = ds.ray([0]*3, [1]*3)
    # Get indices of both.
    i1 = re["index","morton_index"]
    i2 = ra["index","morton_index"]
    # Make some booleans
    bo1 = re & ra
    bo2 = re - ra
    bo3 = re | ra
    bo4 = ds.union([re, ra])
    bo5 = ds.intersection([re, ra])
    # Now make sure the indices also behave as we expect.
    short_line = np.intersect1d(i1, i2)
    cube_minus_line = np.setdiff1d(i1, i2)
    both = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, short_line)
    assert_array_equal(b2, cube_minus_line)
    assert_array_equal(b3, both)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = re ^ ra
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 29

def test_boolean_rays_overlap():
    r"""Test to make sure that boolean objects (rays, overlap)
    behave the way we expect.

    Test non-overlapping rays.
    """
    ds = fake_amr_ds()
    ra1 = ds.ray([0]*3, [1]*3)
    ra2 = ds.ray([0]*3, [0.5]*3)
    # Get indices of both.
    i1 = ra1["index","morton_index"]
    i1.sort()
    i2 = ra2["index","morton_index"]
    i2.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = ra1 & ra2
    bo2 = ra1 - ra2
    bo3 = ra1 | ra2
    bo4 = ds.union([ra1, ra2])
    bo5 = ds.intersection([ra1, ra2])
    # Now make sure the indices also behave as we expect.
    short_line = np.intersect1d(i1, i2)
    short_line_b = np.setdiff1d(i1, i2)
    full_line = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, short_line)
    assert_array_equal(b2, short_line_b)
    assert_array_equal(b3, full_line)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, i1)
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = ra1 ^ ra2
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 30

def test_boolean_ray_slice_overlap():
    r"""Test to make sure that boolean objects (rays and slices, overlap)
    behave the way we expect.

    Test overlapping rays and slices.
    """
    ds = fake_amr_ds()
    sl = ds.r[:,:,0.25]
    ra = ds.ray([0, 0, 0.25], [0, 1, 0.25])
    # Get indices of both.
    i1 = sl["index","morton_index"]
    i1.sort()
    i2 = ra["index","morton_index"]
    i1.sort()
    ii = np.concatenate((i1, i2))
    ii.sort()
    # Make some booleans
    bo1 = sl & ra
    bo2 = sl - ra
    bo3 = sl | ra
    bo4 = ds.union([sl, ra])
    bo5 = ds.intersection([sl, ra])
    # Now make sure the indices also behave as we expect.
    line = np.intersect1d(i1, i2)
    sheet_minus_line = np.setdiff1d(i1, i2)
    sheet = np.union1d(i1, i2)
    b1 = bo1["index","morton_index"]
    b1.sort()
    b2 = bo2["index","morton_index"]
    b2.sort()
    b3 = bo3["index","morton_index"]
    b3.sort()
    assert_array_equal(b1, line)
    assert_array_equal(b2, sheet_minus_line)
    assert_array_equal(b3, sheet)
    b4 = bo4["index","morton_index"]
    b4.sort()
    b5 = bo5["index","morton_index"]
    b5.sort()
    assert_array_equal(b3, i1)
    assert_array_equal(b3, b4)
    assert_array_equal(b1, b5)
    bo6 = sl ^ ra
    b6 = bo6["index", "morton_index"]
    b6.sort()
    assert_array_equal(b6, np.setxor1d(i1, i2)) 

Example 31

def sample_rpn_outputs_wrt_gt_boxes(boxes, scores, gt_boxes, is_training=False, only_positive=False):
    """sample boxes for refined output"""
    boxes, scores, batch_inds = sample_rpn_outputs(boxes, scores, is_training, only_positive)

    if gt_boxes.size > 0:
        overlaps = cython_bbox.bbox_overlaps(
                np.ascontiguousarray(boxes[:, 0:4], dtype=np.float),
                np.ascontiguousarray(gt_boxes[:, 0:4], dtype=np.float))
        gt_assignment = overlaps.argmax(axis=1) # B
        max_overlaps = overlaps[np.arange(boxes.shape[0]), gt_assignment] # B
        fg_inds = np.where(max_overlaps >= cfg.FLAGS.fg_threshold)[0]

        mask_fg_inds = np.where(max_overlaps >= cfg.FLAGS.mask_threshold)[0]
        if mask_fg_inds.size > cfg.FLAGS.masks_per_image:
            mask_fg_inds = np.random.choice(mask_fg_inds, size=cfg.FLAGS.masks_per_image, replace=False)

        if True:
            gt_argmax_overlaps = overlaps.argmax(axis=0) # G
            fg_inds = np.union1d(gt_argmax_overlaps, fg_inds)

	fg_rois = int(min(fg_inds.size, cfg.FLAGS.rois_per_image * cfg.FLAGS.fg_roi_fraction))
      	if fg_inds.size > 0 and fg_rois < fg_inds.size:
       	   fg_inds = np.random.choice(fg_inds, size=fg_rois, replace=False)
      	
	# TODO: sampling strategy
      	bg_inds = np.where((max_overlaps < cfg.FLAGS.bg_threshold))[0]
      	bg_rois = max(min(cfg.FLAGS.rois_per_image - fg_rois, fg_rois * 3), 64)
      	if bg_inds.size > 0 and bg_rois < bg_inds.size:
           bg_inds = np.random.choice(bg_inds, size=bg_rois, replace=False)

	keep_inds = np.append(fg_inds, bg_inds)
    else:
        bg_inds = np.arange(boxes.shape[0])
        bg_rois = min(int(cfg.FLAGS.rois_per_image * (1-cfg.FLAGS.fg_roi_fraction)), 64)
        if bg_rois < bg_inds.size:
            bg_inds = np.random.choice(bg_inds, size=bg_rois, replace=False)

        keep_inds = bg_inds
        mask_fg_inds = np.arange(0)
    
    return boxes[keep_inds, :], scores[keep_inds], batch_inds[keep_inds],\
           boxes[mask_fg_inds, :], scores[mask_fg_inds], batch_inds[mask_fg_inds] 

Example 32

def fit(self, X, T, max_iter=int(1e3), tol=1e-5):
        """Use training data ``X`` and ``T`` to fit a SVC models."""
        n_samples = X.shape[0]
        n_dual_vars = 2 * n_samples
        # Compute the Gram matrix of training data
        K = self.kernel.inner(X, X)

        # The equality constraints: H(x) = 0
        ones = np.ones(n_samples)
        A = np.concatenate((ones, -ones))
        cons = ({'type': 'eq', 'fun': lambda x: A.dot(x), 'jac': lambda x: A})

        # The inequality constaints: 0 <= G(x) <= C
        bnds = [(0, self.C) for i in range(n_dual_vars)]

        # The target function: (1/2)*x'*Q*x + p'*x
        Q = np.array(np.bmat([[K, -K], [-K, K]]))
        p = self.eps - A * np.concatenate((T, T))
        lagrange = lambda x: (0.5 * x.dot(Q).dot(x) + p.dot(x), Q.dot(x) + p)

        # Solve the quadratic program
        opt_solution = minimize(lagrange,
                                np.zeros(n_dual_vars),
                                method='SLSQP',
                                constraints=cons,
                                bounds=bnds,
                                tol=tol,
                                jac=True,
                                options={'maxiter': max_iter,
                                         'disp': True})

        self.dual_var = np.array([None, None], dtype=np.object)
        self.dual_var[0] = opt_solution.x[:n_samples]
        self.dual_var[1] = opt_solution.x[n_samples:]

        self.sv_indices = np.array([None, None], dtype=np.object)
        self.sv_indices[0] = np.nonzero((1 - np.isclose(self.dual_var[0], 0)))[
            0]
        self.sv_indices[1] = np.nonzero((1 - np.isclose(self.dual_var[1], 0)))[
            0]

        self.union_sv_inices = np.union1d(*self.sv_indices)

        self.inner_sv_indices = np.array([None, None], dtype=np.object)
        self.inner_sv_indices[0] = np.nonzero(
            (1 - np.isclose(self.dual_var[0], 0)) *
            (1 - np.isclose(self.dual_var[0], self.C)))[0]
        self.inner_sv_indices[1] = np.nonzero(
            (1 - np.isclose(self.dual_var[1], 0)) *
            (1 - np.isclose(self.dual_var[1], self.C)))[0]

        return self 

Example 33

def select(self, channels, dataframe=False):
        """ return the channels listed in *channels* argument

        Parameters
        ----------
        channels : list
            list of channel names to be filtered
        dataframe: bool
            return a pandas DataFrame instead of a list of Signals; in this
            case the signals will be interpolated using the union of all
            timestamps

        Returns
        -------
        signals : list
            lsit of *Signal* objects based on the input channel list

        """

        # group channels by group index
        gps = {}
        for ch in channels:
            if ch in self.channels_db:
                for group, index in self.channels_db[ch]:
                    if group not in gps:
                        gps[group] = []
                    gps[group].append(index)
            else:
                message = ('MDF filter error: '
                           'Channel "{}" not found, it will be ignored')
                warn(message.format(ch))
                continue

        # append filtered channels to new MDF
        signals = {}
        for group in gps:
            grp = self.groups[group]
            data = self._load_group_data(grp)
            for index in gps[group]:
                signal = self.get(group=group, index=index, data=data)
                signals[signal.name] = signal

        signals = [signals[channel] for channel in channels]

        if dataframe:
            times = [s.timestamps for s in signals]
            t = reduce(np.union1d, times).flatten().astype(np.float64)
            signals = [s.interp(t) for s in signals]
            times = None

            pandas_dict = {'t': t}
            for sig in signals:
                pandas_dict[sig.name] = sig.samples

            signals = DataFrame.from_dict(pandas_dict)

        return signals 

Example 34

def gesture_overlap_csv(csvpathgt, csvpathpred, seqlenght):
	""" Evaluate this sample against the ground truth file """
	maxGestures = 20

	# Get the list of gestures from the ground truth and frame activation
	gtGestures = []
	binvec_gt = numpy.zeros((maxGestures, seqlenght))
	with open(csvpathgt, 'rb') as csvfilegt:
		csvgt = csv.reader(csvfilegt)
		for row in csvgt:
			binvec_gt[int(row[0])-1, int(row[1])-1:int(row[2])-1] = 1
			gtGestures.append(int(row[0]))

	# Get the list of gestures from prediction and frame activation
	predGestures = []
	binvec_pred = numpy.zeros((maxGestures, seqlenght))
	with open(csvpathpred, 'rb') as csvfilepred:
		csvpred = csv.reader(csvfilepred)
		for row in csvpred:
			binvec_pred[int(row[0])-1, int(row[1])-1:int(row[2])-1] = 1
			predGestures.append(int(row[0]))

	# Get the list of gestures without repetitions for ground truth and predicton
	gtGestures = numpy.unique(gtGestures)
	predGestures = numpy.unique(predGestures)

	bgt = (numpy.argmax(binvec_gt,axis=0)+1) * (numpy.max(binvec_gt,axis=0)>0)
	bpred = (numpy.argmax(binvec_pred,axis=0)+1) * (numpy.max(binvec_pred,axis=0)>0)

	# Find false positives
	falsePos=numpy.setdiff1d(gtGestures,numpy.union1d(gtGestures,numpy.union1d(gtGestures,predGestures)))

	# Get overlaps for each gesture
	overlaps = []
	for idx in gtGestures:
		intersec = sum(binvec_gt[idx-1] * binvec_pred[idx-1])
		aux = binvec_gt[idx-1] + binvec_pred[idx-1]
		union = sum(aux > 0)
		overlaps.append(intersec/union)

	# Use real gestures and false positive gestures to calculate the final score
	return sum(overlaps)/(len(overlaps)+len(falsePos)) 

Example 35

def MergeWaveSets(waveset1, waveset2):
    """Return the union of the two wavelength sets.

    The union is computed using `numpy.union1d`, unless one or
    both of them is `None`.

    The merged result may sometimes contain numbers which are nearly
    equal but differ at levels as small as 1E-14. Having values this
    close together can cause problems due to effectively duplicate
    wavelength values. Therefore, wavelength values having differences
    smaller than or equal to ``pysynphot.spectrum.MERGETHRESH``
    (defaults to 1E-12) are considered as the same.

    Parameters
    ----------
    waveset1, waveset2 : array_like or `None`
        Wavelength sets to combine.

    Returns
    -------
    MergedWaveSet : array_like or `None`
        Merged wavelength set. It is `None` if both inputs are such.

    """
    if waveset1 is None and waveset2 is not None:
        MergedWaveSet = waveset2
    elif waveset2 is None and waveset1 is not None:
        MergedWaveSet = waveset1
    elif waveset1 is None and waveset2 is None:
        MergedWaveSet = None
    else:
        MergedWaveSet = N.union1d(waveset1, waveset2)

        # The merged wave sets may sometimes contain numbers which are nearly
        # equal but differ at levels as small as 1e-14. Having values this
        # close together can cause problems down the line so here we test
        # whether any such small differences are present, with a small
        # difference defined as less than MERGETHRESH.
        #
        # If small differences are present we make a copy of the union'ed array
        # with the lower of the close together pairs removed.
        delta = MergedWaveSet[1:] - MergedWaveSet[:-1]

        if not (delta > MERGETHRESH).all():
            newlen = len(delta[delta > MERGETHRESH]) + 1
            newmerged = N.zeros(newlen, dtype=MergedWaveSet.dtype)
            newmerged[:-1] = MergedWaveSet[:-1][delta > MERGETHRESH]
            newmerged[-1] = MergedWaveSet[-1]

            MergedWaveSet = newmerged

    return MergedWaveSet 

Example 36

def get_ids_in_region(
            self, cutout_fcn, resource, resolution, corner, extent,
            t_range=[0, 1], version=0):
        """
        Method to get all the ids within a defined region.

        Args:
            cutout_fcn (function): SpatialDB's cutout method.  Provided for naive search of ids in sub-regions
            resource (project.BossResource): Data model info based on the request or target resource
            resolution (int): the resolution level
            corner ((int, int, int)): xyz location of the corner of the region
            extent ((int, int, int)): xyz extents of the region
            t_range (optional[list[int]]): time range, defaults to [0, 1]
            version (optional[int]): Reserved for future use.  Defaults to 0

        Returns:
            (dict): { 'ids': ['1', '4', '8'] }

        """

        # Identify sub-region entirely contained by cuboids.
        cuboids = Region.get_cuboid_aligned_sub_region(
            resolution, corner, extent)

        # Get all non-cuboid aligned sub-regions.
        non_cuboid_list = Region.get_all_partial_sub_regions(
            resolution, corner, extent)

        # Do cutouts on each partial region and build id set.
        id_set = np.array([], dtype='uint64')
        for partial_region in non_cuboid_list:
            extent = partial_region.extent
            if extent[0] == 0 or extent[1] == 0 or extent[2] == 0:
                continue
            id_arr = self._get_ids_from_cutout(
                cutout_fcn, resource, resolution,
                partial_region.corner, partial_region.extent,
                t_range, version)
            # TODO: do a unique first?  perf test
            id_set = np.union1d(id_set, id_arr)

        # Get ids from dynamo for sub-region that's 100% cuboid aligned.
        obj_key_list = self._get_object_keys(
            resource, resolution, cuboids, t_range)
        cuboid_ids = self.obj_ind.get_ids_in_cuboids(obj_key_list, version)
        cuboid_ids_arr = np.asarray([int(id) for id in cuboid_ids], dtype='uint64')

        # Union ids from cuboid aligned sub-region.
        id_set = np.union1d(id_set, cuboid_ids_arr)

        # Convert ids back to strings for transmission via HTTP.
        ids_as_str = ['%d' % n for n in id_set]

        return { 'ids': ids_as_str } 

Example 37

def sample_rpn_outputs_wrt_gt_boxes(boxes, scores, gt_boxes, is_training=False, only_positive=False):
    """sample boxes for refined output"""
    boxes, scores, batch_inds = sample_rpn_outputs(boxes, scores, is_training, only_positive)

    if gt_boxes.size > 0:
        overlaps = cython_bbox.bbox_overlaps(
                np.ascontiguousarray(boxes[:, 0:4], dtype=np.float),
                np.ascontiguousarray(gt_boxes[:, 0:4], dtype=np.float))
        gt_assignment = overlaps.argmax(axis=1) # B
        max_overlaps = overlaps[np.arange(boxes.shape[0]), gt_assignment] # B
        fg_inds = np.where(max_overlaps >= cfg.FLAGS.fg_threshold)[0]
        if _DEBUG and np.argmax(overlaps[fg_inds],axis=1).size < gt_boxes.size/5.0:
            print("gt_size")
            print(gt_boxes)
            gt_height = (gt_boxes[:,2]-gt_boxes[:,0])
            gt_width = (gt_boxes[:,3]-gt_boxes[:,1])
            gt_dim = np.vstack((gt_height, gt_width))
            print(np.transpose(gt_dim))
            #print(gt_height)
            #print(gt_width)

            print('SAMPLE: %d after overlaps by %s' % (len(fg_inds),cfg.FLAGS.fg_threshold))
            print("detected object no.")
            print(np.argmax(overlaps[fg_inds],axis=1))
            print("total object")
            print(gt_boxes.size/5.0)

        mask_fg_inds = np.where(max_overlaps >= cfg.FLAGS.mask_threshold)[0]
        if mask_fg_inds.size > cfg.FLAGS.masks_per_image:
            mask_fg_inds = np.random.choice(mask_fg_inds, size=cfg.FLAGS.masks_per_image, replace=False)

        if True:
            gt_argmax_overlaps = overlaps.argmax(axis=0) # G
            fg_inds = np.union1d(gt_argmax_overlaps, fg_inds)

	fg_rois = int(min(fg_inds.size, cfg.FLAGS.rois_per_image * cfg.FLAGS.fg_roi_fraction))
      	if fg_inds.size > 0 and fg_rois < fg_inds.size:
       	   fg_inds = np.random.choice(fg_inds, size=fg_rois, replace=False)
      	
	# TODO: sampling strategy
      	bg_inds = np.where((max_overlaps < cfg.FLAGS.bg_threshold))[0]
      	bg_rois = max(min(cfg.FLAGS.rois_per_image - fg_rois, fg_rois * 3), 8)#64
      	if bg_inds.size > 0 and bg_rois < bg_inds.size:
           bg_inds = np.random.choice(bg_inds, size=bg_rois, replace=False)

        keep_inds = np.append(fg_inds, bg_inds)
        #print(gt_boxes[np.argmax(overlaps[fg_inds],axis=1),4])
    else:
        bg_inds = np.arange(boxes.shape[0])
        bg_rois = min(int(cfg.FLAGS.rois_per_image * (1-cfg.FLAGS.fg_roi_fraction)), 8)#64
        if bg_rois < bg_inds.size:
            bg_inds = np.random.choice(bg_inds, size=bg_rois, replace=False)

        keep_inds = bg_inds
        mask_fg_inds = np.arange(0)
    
    return boxes[keep_inds, :], scores[keep_inds], batch_inds[keep_inds],\
           boxes[mask_fg_inds, :], scores[mask_fg_inds], batch_inds[mask_fg_inds] 

Example 38

def _get_points(self):
        # in case only one or no source is enabled
        if not (self.src1 and self.src1.enabled):
            if (self.src2 and self.src2.enabled):
                return self.src2.points
            else:
                return np.zeros((5, 3))
        elif not (self.src2 and self.src2.enabled):
            return self.src1.points

        # Average method
        if self.method == 'Average':
            if len(np.union1d(self.src1.use, self.src2.use)) < 5:
                error(None, "Need at least one source for each point.",
                      "Marker Average Error")
                return np.zeros((5, 3))

            pts = (self.src1.points + self.src2.points) / 2.
            for i in np.setdiff1d(self.src1.use, self.src2.use):
                pts[i] = self.src1.points[i]
            for i in np.setdiff1d(self.src2.use, self.src1.use):
                pts[i] = self.src2.points[i]

            return pts

        # Transform method
        idx = np.intersect1d(self.src1.use, self.src2.use, assume_unique=True)
        if len(idx) < 3:
            error(None, "Need at least three shared points for trans"
                  "formation.", "Marker Interpolation Error")
            return np.zeros((5, 3))

        src_pts = self.src1.points[idx]
        tgt_pts = self.src2.points[idx]
        est = fit_matched_points(src_pts, tgt_pts, out='params')
        rot = np.array(est[:3]) / 2.
        tra = np.array(est[3:]) / 2.

        if len(self.src1.use) == 5:
            trans = np.dot(translation(*tra), rotation(*rot))
            pts = apply_trans(trans, self.src1.points)
        elif len(self.src2.use) == 5:
            trans = np.dot(translation(* -tra), rotation(* -rot))
            pts = apply_trans(trans, self.src2.points)
        else:
            trans1 = np.dot(translation(*tra), rotation(*rot))
            pts = apply_trans(trans1, self.src1.points)
            trans2 = np.dot(translation(* -tra), rotation(* -rot))
            for i in np.setdiff1d(self.src2.use, self.src1.use):
                pts[i] = apply_trans(trans2, self.src2.points[i])

        return pts 

Example 39

def sample_rpn_outputs_wrt_gt_boxes(boxes, scores, gt_boxes, is_training=False, only_positive=False):
    """sample boxes for refined output"""
    boxes, scores, batch_inds = sample_rpn_outputs(boxes, scores, is_training, only_positive)

    if gt_boxes.size > 0:
        overlaps = cython_bbox.bbox_overlaps(
                np.ascontiguousarray(boxes[:, 0:4], dtype=np.float),
                np.ascontiguousarray(gt_boxes[:, 0:4], dtype=np.float))
        gt_assignment = overlaps.argmax(axis=1) # B
        max_overlaps = overlaps[np.arange(boxes.shape[0]), gt_assignment] # B
        fg_inds = np.where(max_overlaps >= cfg.FLAGS.fg_threshold)[0]

        mask_fg_inds = np.where(max_overlaps >= cfg.FLAGS.mask_threshold)[0]
        if mask_fg_inds.size > cfg.FLAGS.masks_per_image:
            mask_fg_inds = np.random.choice(mask_fg_inds, size=cfg.FLAGS.masks_per_image, replace=False)

        if True:
            gt_argmax_overlaps = overlaps.argmax(axis=0) # G
            fg_inds = np.union1d(gt_argmax_overlaps, fg_inds)

	fg_rois = int(min(fg_inds.size, cfg.FLAGS.rois_per_image * cfg.FLAGS.fg_roi_fraction))
      	if fg_inds.size > 0 and fg_rois < fg_inds.size:
       	   fg_inds = np.random.choice(fg_inds, size=fg_rois, replace=False)
      	
	# TODO: sampling strategy
      	bg_inds = np.where((max_overlaps < cfg.FLAGS.bg_threshold))[0]
      	bg_rois = max(min(cfg.FLAGS.rois_per_image - fg_rois, fg_rois * 3), 64)
      	if bg_inds.size > 0 and bg_rois < bg_inds.size:
           bg_inds = np.random.choice(bg_inds, size=bg_rois, replace=False)

	keep_inds = np.append(fg_inds, bg_inds)
    else:
        bg_inds = np.arange(boxes.shape[0])
        bg_rois = min(int(cfg.FLAGS.rois_per_image * (1-cfg.FLAGS.fg_roi_fraction)), 64)
        if bg_rois < bg_inds.size:
            bg_inds = np.random.choice(bg_inds, size=bg_rois, replace=False)

        keep_inds = bg_inds
        mask_fg_inds = np.arange(0)
    
    return boxes[keep_inds, :], scores[keep_inds], batch_inds[keep_inds],\
           boxes[mask_fg_inds, :], scores[mask_fg_inds], batch_inds[mask_fg_inds] 
点赞