The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def M(self): """Returns the :math:`M` matrix of integers that determine points at which the functions are sampled in the unit cell. Examples: For `S = [2, 2, 1]`, the returned matrix is: .. code-block:: python np.ndarray([[0,0,0], [1,0,0], [0,1,0], [1,1,0]], dtype=int) """ if self._M is None: ms = np.arange(np.prod(self.S, dtype=int)) m1 = np.fmod(ms, self.S[0]) m2 = np.fmod(np.floor(ms/self.S[0]), self.S[1]) m3 = np.fmod(np.floor(ms/(self.S[0]*self.S[1])), self.S[2]) #Make sure we explicitly use an integer array; it's faster. self._M = np.asarray(np.vstack((m1, m2, m3)).T, dtype=int) return self._M
Example 2
def setRotation(self, rot, smallangle=True): ''' Rotation angle in degrees ''' rad = np.deg2rad(rot) if smallangle: # bring rad close to zero. rad = np.fmod(rad, 2.*pi) if rad > pi: rad -= 2.*pi if rad < -pi: rad += 2.*pi self.T = [ 0., -rad, rad, 0. ] else: cr = np.cos(rad) sr = np.sin(rad) self.T = [ cr - 1, -sr, sr, cr - 1 ]
Example 3
def single_spectrogram(inseq,fs,wlen,h,imag=False): """ imag: Return Imaginary Data of the STFT on True """ NFFT = int(2**(np.ceil(np.log2(wlen)))) K = np.sum(hamming(wlen, False))/wlen raw_data = inseq.astype('float32') raw_data = raw_data/np.amax(np.absolute(raw_data)) stft_data,_,_ = STFT(raw_data,wlen,h,NFFT,fs) s = np.absolute(stft_data)/wlen/K; if np.fmod(NFFT,2): s[1:,:] *=2 else: s[1:-2] *=2 real_data = np.transpose(20*np.log10(s + 10**-6)).astype(np.float32) if imag: imag_data = np.angle(stft_data).astype(np.float32) return real_data,imag_data return real_data
Example 4
def dataistft(realdata,imgdata,fs,wlen,h): nfft = int(2**(np.ceil(np.log2(wlen)))) K = np.sum(hamming(wlen, False))/wlen realdata = np.power(20,realdata/20) - 1e-6 if np.fmod(nfft,2): realdata[1:-1,:] /=2 else: realdata[1:-2,:] /=2 realdata *= wlen*K prewav = realdata.transpose()*np.exp(1j*imgdata) istft_data,_ = ISTFT(prewav, h, nfft, fs) max_dt = np.abs(istft_data).max() istft_data /= max_dt return istft_data
Example 5
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 6
def func(func, minkind=None, maxkind=None): @ophelper def function(*args): if allConstantNodes(args): return ConstantNode(func(*[x.value for x in args])) kind = commonKind(args) if kind in ('int', 'long'): # Exception for following NumPy casting rules #FIXME: this is not always desirable. The following # functions which return ints (for int inputs) on numpy # but not on numexpr: copy, abs, fmod, ones_like kind = 'double' else: # Apply regular casting rules if minkind and kind_rank.index(minkind) > kind_rank.index(kind): kind = minkind if maxkind and kind_rank.index(maxkind) < kind_rank.index(kind): kind = maxkind return FuncNode(func.__name__, args, kind) return function
Example 7
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 8
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 9
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 10
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 11
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 12
def fmodulo(x1: Number = 1.0, x2: Number = 1.0) -> Float: return np.fmod(x1, x2)
Example 13
def calculate_bin_indices( self, tstart, tsamp, data_size): """Calculate the bin that each time sample should be added to @param[in] tstart Time of the first element (s) @param[in] tsamp Difference between the times of consecutive elements (s) @param[in] data_size Number of elements @return Which bin each sample is folded into """ arrival_time = tstart + tsamp * np.arange(data_size) phase = np.fmod(arrival_time, self.period) return np.floor(phase / self.period * self.bins).astype(int)
Example 14
def dihedral_angle(a, b, c, d): """ Calculate the dihedral angle between 4 vectors, representing 4 connected points. The angle is in range [-180, 180]. @param a: the four points that define the dihedral angle @type a: array @return: angle in [-180, 180] """ v = b - c m = numpy.cross((a - b), v) m /= norm(m) n = numpy.cross((d - c), v) n /= norm(n) c = numpy.dot(m, n) s = numpy.dot(numpy.cross(n, m), v) / norm(v) angle = math.degrees(math.atan2(s, c)) if angle > 0: return numpy.fmod(angle + 180, 360) - 180 else: return numpy.fmod(angle - 180, 360) + 180
Example 15
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 16
def compute_zero_padding_values(self, number): """During zero padding, we want to fill zeros before and after signal. This function computes the number of zeros""" number_of_zeros_before_signal = np.floor(number / 2) if np.fmod(number, 2) == 1: number_of_zeros_after_signal = number_of_zeros_before_signal + 1 else: number_of_zeros_after_signal = number_of_zeros_before_signal return number_of_zeros_before_signal, number_of_zeros_after_signal
Example 17
def wav_to_image(filename, wlen, mindata, maxdata, save=False, name_save=None, ): h = wlen/4 K = np.sum(hamming(wlen, False))/wlen nfft = int(2**(np.ceil(np.log2(wlen)))) Fs, data_seq = wavfile.read(filename) raw_data = data_seq.astype('float32') max_dt = np.amax(np.absolute(raw_data)) raw_data = raw_data/max_dt stft_data,_,_ = STFT(raw_data,wlen,h,nfft,Fs) s = abs(stft_data)/wlen/K; if np.fmod(nfft,2): s[1:,:] *=2 else: s[1:-2] *=2 data_temp = 20*np.log10(s + 10**-6) outdata = data_temp.transpose() """Scaling""" mindata = np.amin(outdata, axis=0, keepdims = True) maxdata = np.amax(outdata, axis=0, keepdims = True) outdata -=mindata outdata /=(maxdata-mindata) outdata *=0.8 outdata +=0.1 figmin = np.zeros((5,outdata.shape[1])) figmax = np.ones((5,outdata.shape[1])) outdata = np.concatenate((outdata,figmin,figmax), axis=0) dpi = 96 a = float(outdata.shape[0])/dpi b = float(outdata.shape[1])/dpi f = plt.figure(figsize=(b,a), dpi=dpi) f.figimage(outdata) if save: f.savefig(name_save, dpi=f.dpi) return f
Example 18
def ISTFT(data, h, nfft, fs): # function: [x, t] = istft(stft, h, nfft, fs) # stft - STFT matrix (only unique points, time across columns, freq across rows) # h - hop size # nfft - number of FFT points # fs - sampling frequency, Hz # x - signal in the time domain # t - time vector, s # estimate the length of the signal coln = data.shape[1] xlen = nfft + (coln-1)*h x = np.zeros((xlen,)) # form a periodic hamming window win = hamming(nfft, False) # perform IFFT and weighted-OLA if np.fmod(nfft,2): lst_idx = -1 else: lst_idx = -2 for b in range (0, h*(coln-1),h): # extract FFT points X = data[:,1+b/h] X = np.concatenate((X, np.conjugate(X[lst_idx:0:-1]))) # IFFT xprim = np.real(np.fft.ifft(X)) # weighted-OLA x[b:b+nfft] = x[b:b+nfft] + np.transpose(xprim*win) W0 = np.sum(win*win) x *= h/W0 # calculate the time vector actxlen = x.shape[0] t = np.arange(0,actxlen-1,dtype=np.float32)/fs return x, t
Example 19
def constrainAngle( self, x): x = np.fmod( x+180, 360) if x < 0: x+= 360 return x-180
Example 20
def constrainAngle( self, x): x = np.fmod( x+180, 360) if x < 0: x+= 360 return x-180
Example 21
def constrainAngle( self, x): x = np.fmod( x+180, 360) if x < 0: x+= 360 return x-180
Example 22
def normaliseAngle(value): angle = np.fmod(value, 2 * np.pi); if (angle <= -np.pi): angle += np.pi * 2; if (angle > np.pi): angle -= 2 * np.pi; return angle;
Example 23
def wrap1(x): return numpy.fmod(x + 1 - numpy.ceil(x), 1)
Example 24
def clamp_longitude( lons ): lons = np.asarray(lons) lons = np.fmod(lons, 360.) lons[np.where(lons < -180.)] += 360. lons[np.where(lons > 180.)] -= 360. return lons
Example 25
def visiting(self, x, step, temperature): dim = x.size if step < dim: # Changing all coordinates with a new visting value visits = np.array([self.visit_fn( temperature) for _ in range(dim)]) upper_sample = self.rs.random_sample() lower_sample = self.rs.random_sample() visits[visits > self.tail_limit] = self.tail_limit * upper_sample visits[visits < -self.tail_limit] = -self.tail_limit * lower_sample x_visit = visits + x a = x_visit - self.lower b = np.fmod(a, self.b_range) + self.b_range x_visit = np.fmod(b, self.b_range) + self.lower x_visit[np.fabs( x_visit - self.lower) < self.min_visit_bound] += 1.e-10 else: # Changing only one coordinate at a time based on Markov chain step x_visit = np.copy(x) visit = self.visit_fn(temperature) if visit > self.tail_limit: visit = self.tail_limit * self.rs.random_sample() elif visit < -self.tail_limit: visit = -self.tail_limit * self.rs.random_sample() index = step - dim x_visit[index] = visit + x[index] a = x_visit[index] - self.lower[index] b = np.fmod(a, self.b_range[index]) + self.b_range[index] x_visit[index] = np.fmod(b, self.b_range[ index]) + self.lower[index] if np.fabs(x_visit[index] - self.lower[ index]) < self.min_visit_bound: x_visit[index] += self.min_visit_bound return x_visit
Example 26
def testFloat(self): x = [0.5, 0.7, 0.3] for dtype in [np.float32, np.double]: # Test scalar and vector versions. for denom in [x[0], [x[0]] * 3]: x_np = np.array(x, dtype=dtype) with self.test_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y_tf = math_ops.mod(x_tf, denom) y_tf_np = y_tf.eval() y_np = np.fmod(x_np, denom) self.assertAllClose(y_tf_np, y_np, atol=1e-2)