Python numpy.find_common_type() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def upcast_float16_ufunc(fn):
    """Decorator that enforces computation is not done in float16 by NumPy.

    Some ufuncs in NumPy will compute float values on int8 and uint8
    in half-precision (float16), which is not enough, and not compatible
    with the C code.

    :param fn: numpy ufunc
    :returns: function similar to fn.__call__, computing the same
        value with a minimum floating-point precision of float32
    """
    def ret(*args, **kwargs):
        out_dtype = numpy.find_common_type(
            [a.dtype for a in args], [numpy.float16])
        if out_dtype == 'float16':
            # Force everything to float32
            sig = 'f' * fn.nin + '->' + 'f' * fn.nout
            kwargs.update(sig=sig)
        return fn(*args, **kwargs)

    return ret 

Example 2

def __init__(self,value,site,tag,matrix):
        '''
        Constructor.

        Parameters
        ----------
        value : number
            The overall coefficient of the single site operator.
        site : Label
            The site label of the single site operator.
        tag : any hashable object
            The tag of the single operator.
        matrix : 2d ndarray
            The matrix of the single site operator.
        '''
        assert matrix.ndim==2
        dtype=np.find_common_type([np.asarray(value).dtype,np.asarray(matrix).dtype],[])
        self.value=np.array(value,dtype=dtype)
        self.site=site
        self.tag=tag
        self.matrix=np.asarray(matrix,dtype=dtype) 

Example 3

def __iadd__(self,other):
        '''
        Overloaded self addition(+) operator, which supports the self addition by an instance of Opt.
        '''
        assert other.site==self.site
        if self.tag=='0':
            return other
        elif other.tag=='0':
            return self
        else:
            if self.tag==other.tag:
                self.value+=other.value
            else:
                self.value=np.array(1.0,dtype=np.find_common_type([self.value.dtype,other.value.dtype],[]))
                self.tag='%s(%s)+%s(%s)'%(self.value,self.tag,other.value,other.tag)
                self.matrix*=self.value
                self.matrix+=other.value*other.matrix
            return self 

Example 4

def block_diag(*ms):
    '''
    Create a block diagonal matrix from provided ones.

    Parameters
    ----------
    ms : list of 2d ndarray
        The input matrices.

    Returns
    -------
    2d ndarray
        The constructed block diagonal matrix.
    '''
    if len(ms)==0: ms=[np.zeros((0,0))]
    shapes=np.array([a.shape for a in ms])
    dtype=np.find_common_type([m.dtype for m in ms],[])
    result=np.zeros(np.sum(shapes,axis=0),dtype=dtype)
    r,c=0,0
    for i,(cr,cc) in enumerate(shapes):
        result[r:r+cr,c:c+cc]=ms[i]
        r+=cr
        c+=cc
    return result 

Example 5

def test_find_common_type_boolean(self):
        # Ticket #1695
        assert_(np.find_common_type([], ['?', '?']) == '?') 

Example 6

def test_scalar_loses1(self):
        res = np.find_common_type(['f4', 'f4', 'i2'], ['f8'])
        assert_(res == 'f4') 

Example 7

def test_scalar_loses2(self):
        res = np.find_common_type(['f4', 'f4'], ['i8'])
        assert_(res == 'f4') 

Example 8

def test_scalar_wins(self):
        res = np.find_common_type(['f4', 'f4', 'i2'], ['c8'])
        assert_(res == 'c8') 

Example 9

def test_scalar_wins2(self):
        res = np.find_common_type(['u4', 'i4', 'i4'], ['f4'])
        assert_(res == 'f8') 

Example 10

def test_where_type(self):
        # Test the type conservation with where
        x = np.arange(4, dtype=np.int32)
        y = np.arange(4, dtype=np.float32) * 2.2
        test = where(x > 1.5, y, x).dtype
        control = np.find_common_type([np.int32, np.float32], [])
        assert_equal(test, control) 

Example 11

def _cast_common_type(*xs):
    dtypes = [x.dtype for x in xs if x is not None]
    dtype = numpy.find_common_type(dtypes, [])
    return [x.astype(dtype) if x is not None and x.dtype != dtype else x
            for x in xs] 

Example 12

def slogdet(a):
    """Returns sign and logarithm of the determinat of an array.

    It calculates the natural logarithm of the deteminant of a given value.

    Args:
        a (cupy.ndarray): The input matrix with dimension ``(..., N, N)``.

    Returns:
        tuple of :class:`~cupy.ndarray`:
            It returns a tuple ``(sign, logdet)``. ``sign`` represents each
            sign of the deteminant as a real number ``0``, ``1`` or ``-1``.
            'logdet' represents the natural logarithm of the absolute of the
            deteminant.
            If the deteninant is zero, ``sign`` will be ``0`` and ``logdet``
            will be ``-inf``.
            The shapes of both ``sign`` and ``logdet`` are equal to
            ``a.shape[:-2]``.

    .. seealso:: :func:`numpy.linalg.slogdet`
    """
    if not cuda.cusolver_enabled:
        raise RuntimeError('Current cupy only supports cusolver in CUDA 8.0')

    if a.ndim < 2:
        msg = ('%d-dimensional array given. '
               'Array must be at least two-dimensional' % a.ndim)
        raise linalg.LinAlgError(msg)

    dtype = numpy.find_common_type((a.dtype.char, 'f'), ())
    shape = a.shape[:-2]
    sign = cupy.empty(shape, dtype)
    logdet = cupy.empty(shape, dtype)

    a = a.astype(dtype)
    for index in numpy.ndindex(*shape):
        s, l = _slogdet_one(a[index])
        sign[index] = s
        logdet[index] = l
    return sign, logdet 

Example 13

def _get_dtype(operators, dtypes=None):
    if dtypes is None:
        dtypes = []
    for obj in operators:
        if obj is not None and hasattr(obj, 'dtype'):
            dtypes.append(obj.dtype)
    return np.find_common_type(dtypes, []) 

Example 14

def _coerce_dtype(self, other_dtype):
        """Possibly change the bin content type to allow correct operations with other operand.

        Parameters
        ----------
        other_dtype : np.dtype or type
        """
        new_dtype = np.find_common_type([self.dtype, np.dtype(other_dtype)], [])
        if new_dtype != self.dtype:
            self.dtype = new_dtype 

Example 15

def test_find_common_type_boolean(self):
        # Ticket #1695
        assert_(np.find_common_type([], ['?', '?']) == '?') 

Example 16

def test_scalar_loses1(self):
        res = np.find_common_type(['f4', 'f4', 'i2'], ['f8'])
        assert_(res == 'f4') 

Example 17

def test_scalar_loses2(self):
        res = np.find_common_type(['f4', 'f4'], ['i8'])
        assert_(res == 'f4') 

Example 18

def test_scalar_wins(self):
        res = np.find_common_type(['f4', 'f4', 'i2'], ['c8'])
        assert_(res == 'c8') 

Example 19

def test_scalar_wins2(self):
        res = np.find_common_type(['u4', 'i4', 'i4'], ['f4'])
        assert_(res == 'f8') 

Example 20

def test_where_type(self):
        # Test the type conservation with where
        x = np.arange(4, dtype=np.int32)
        y = np.arange(4, dtype=np.float32) * 2.2
        test = where(x > 1.5, y, x).dtype
        control = np.find_common_type([np.int32, np.float32], [])
        assert_equal(test, control) 

Example 21

def forward_cpu(self, x):
        a, b = x
        batch_size = a.shape[0]
        shape = self._output_shape(a, b)
        ret_dtype = numpy.find_common_type([a.dtype, b.dtype], [])
        ret = numpy.empty(shape, dtype=ret_dtype)
        for i in six.moves.range(batch_size):
            ret[i] = _matmul(
                a[i], b[i], transa=self.transa, transb=self.transb)
        return ret, 

Example 22

def _arith_method_PANEL(op, name, str_rep=None, fill_zeros=None,
                        default_axis=None, **eval_kwargs):
    # copied from Series na_op above, but without unnecessary branch for
    # non-scalar
    def na_op(x, y):
        try:
            result = expressions.evaluate(op, str_rep, x, y,
                                          raise_on_error=True, **eval_kwargs)
        except TypeError:

            # TODO: might need to find_common_type here?
            result = np.empty(len(x), dtype=x.dtype)
            mask = notnull(x)
            result[mask] = op(x[mask], y)
            result, changed = com._maybe_upcast_putmask(result, ~mask, np.nan)

        result = com._fill_zeros(result, x, y, name, fill_zeros)
        return result

    # work only for scalars
    def f(self, other):
        if not isscalar(other):
            raise ValueError('Simple arithmetic with %s can only be '
                             'done with scalar values' %
                             self._constructor.__name__)

        return self._combine(other, op)

    f.__name__ = name
    return f 

Example 23

def test_find_common_type_boolean(self):
        # Ticket #1695
        assert_(np.find_common_type([], ['?', '?']) == '?') 

Example 24

def test_scalar_loses1(self):
        res = np.find_common_type(['f4', 'f4', 'i2'], ['f8'])
        assert_(res == 'f4') 

Example 25

def test_scalar_loses2(self):
        res = np.find_common_type(['f4', 'f4'], ['i8'])
        assert_(res == 'f4') 

Example 26

def test_scalar_wins(self):
        res = np.find_common_type(['f4', 'f4', 'i2'], ['c8'])
        assert_(res == 'c8') 

Example 27

def test_scalar_wins3(self):  # doesn't go up to 'f16' on purpose
        res = np.find_common_type(['u8', 'i8', 'i8'], ['f8'])
        assert_(res == 'f8') 

Example 28

def test_where_type(self):
        # Test the type conservation with where
        x = np.arange(4, dtype=np.int32)
        y = np.arange(4, dtype=np.float32) * 2.2
        test = where(x > 1.5, y, x).dtype
        control = np.find_common_type([np.int32, np.float32], [])
        assert_equal(test, control) 

Example 29

def _common_dtype(x, y):
        """Determines common numpy DTYPE for arrays."""

        dtype = np.find_common_type([x.dtype, y.dtype], [])
        if x.dtype != dtype: x = x.astype(dtype)
        if y.dtype != dtype: y = y.astype(dtype)

        return x, y 

Example 30

def _common_dtype(x, y):

        dtype = np.find_common_type([x.dtype, y.dtype], [])
        if x.dtype != dtype: x = x.astype(dtype)
        if y.dtype != dtype: y = y.astype(dtype)

        return x, y 

Example 31

def test_find_common_type_boolean(self):
        # Ticket #1695
        assert_(np.find_common_type([], ['?', '?']) == '?') 

Example 32

def test_scalar_loses1(self):
        res = np.find_common_type(['f4', 'f4', 'i2'], ['f8'])
        assert_(res == 'f4') 

Example 33

def test_scalar_loses2(self):
        res = np.find_common_type(['f4', 'f4'], ['i8'])
        assert_(res == 'f4') 

Example 34

def test_scalar_wins(self):
        res = np.find_common_type(['f4', 'f4', 'i2'], ['c8'])
        assert_(res == 'c8') 

Example 35

def test_scalar_wins2(self):
        res = np.find_common_type(['u4', 'i4', 'i4'], ['f4'])
        assert_(res == 'f8') 

Example 36

def test_where_type(self):
        # Test the type conservation with where
        x = np.arange(4, dtype=np.int32)
        y = np.arange(4, dtype=np.float32) * 2.2
        test = where(x > 1.5, y, x).dtype
        control = np.find_common_type([np.int32, np.float32], [])
        assert_equal(test, control) 

Example 37

def test_find_common_type_boolean(self):
        # Ticket #1695
        assert_(np.find_common_type([], ['?', '?']) == '?') 

Example 38

def test_scalar_loses1(self):
        res = np.find_common_type(['f4', 'f4', 'i2'], ['f8'])
        assert_(res == 'f4') 

Example 39

def test_scalar_loses2(self):
        res = np.find_common_type(['f4', 'f4'], ['i8'])
        assert_(res == 'f4') 

Example 40

def test_scalar_wins(self):
        res = np.find_common_type(['f4', 'f4', 'i2'], ['c8'])
        assert_(res == 'c8') 

Example 41

def test_scalar_wins2(self):
        res = np.find_common_type(['u4', 'i4', 'i4'], ['f4'])
        assert_(res == 'f8') 

Example 42

def test_where_type(self):
        # Test the type conservation with where
        x = np.arange(4, dtype=np.int32)
        y = np.arange(4, dtype=np.float32) * 2.2
        test = where(x > 1.5, y, x).dtype
        control = np.find_common_type([np.int32, np.float32], [])
        assert_equal(test, control) 

Example 43

def test_find_common_type_boolean(self):
        # Ticket #1695
        assert_(np.find_common_type([], ['?', '?']) == '?') 

Example 44

def test_scalar_loses1(self):
        res = np.find_common_type(['f4', 'f4', 'i2'], ['f8'])
        assert_(res == 'f4') 

Example 45

def test_scalar_loses2(self):
        res = np.find_common_type(['f4', 'f4'], ['i8'])
        assert_(res == 'f4') 

Example 46

def test_scalar_wins(self):
        res = np.find_common_type(['f4', 'f4', 'i2'], ['c8'])
        assert_(res == 'c8') 

Example 47

def test_scalar_wins2(self):
        res = np.find_common_type(['u4', 'i4', 'i4'], ['f4'])
        assert_(res == 'f8') 

Example 48

def test_where_type(self):
        # Test the type conservation with where
        x = np.arange(4, dtype=np.int32)
        y = np.arange(4, dtype=np.float32) * 2.2
        test = where(x > 1.5, y, x).dtype
        control = np.find_common_type([np.int32, np.float32], [])
        assert_equal(test, control) 

Example 49

def directsum(tensors,labels,axes=()):
        '''
        The directsum of a couple of tensors.

        Parameters
        ----------
        tensors : list of Tensor
            The tensors to be directsummed.
        labels : list of Label
            The labels of the directsum.
        axes : list of integer, optional
                The axes along which the directsum is block diagonal.

        Returns
        -------
        Tensor
            The directsum of the tensors.
        '''
        for i,tensor in enumerate(tensors):
            if i==0:
                assert tensor.ndim>len(axes)
                ndim,qnon,shps=tensor.ndim,tensor.qnon,[tensor.shape[axis] for axis in axes]
                alters,shape,dtypes=set(xrange(ndim))-set(axes),list(tensor.shape),[tensor.dtype]
            else:
                assert tensor.ndim==ndim and tensor.qnon==qnon and [tensor.shape[axis] for axis in axes]==shps
                for alter in alters: shape[alter]+=tensor.shape[alter]
                dtypes.append(tensor.dtype)
        data=np.zeros(tuple(shape),dtype=np.find_common_type([],dtypes))
        for i,tensor in enumerate(tensors):
            if i==0:
                slices=[slice(0,tensor.shape[axis]) if axis in alters else slice(None,None,None) for axis in xrange(ndim)]
            else:
                for alter in alters:
                    slices[alter]=slice(slices[alter].stop,slices[alter].stop+tensor.shape[alter])
            data[tuple(slices)]=tensor[...]
        if qnon:
            for alter in alters:
                labels[alter].qns=QuantumNumbers.union([tensor.labels[alter].qns for tensor in tensors])
            for axis in axes:
                labels[axis].qns=next(iter(tensor)).labels[axis].qns
        return Tensor(data,labels=labels) 

Example 50

def solve(A,b,rtol=10**-8):
    '''
    Solve the matrix equation A*x=b by QR decomposition.

    Parameters
    ----------
    A : 2d ndarray
        The coefficient matrix.
    b : 1d ndarray
        The ordinate values.
    rtol : np.float64
        The relative tolerance of the solution.

    Returns
    -------
    1d ndarray
        The solution.

    Raises
    ------
    LinAlgError
        When no solution exists.
    '''
    assert A.ndim==2
    nrow,ncol=A.shape
    if nrow>=ncol:
        result=np.zeros(ncol,dtype=np.find_common_type([],[A.dtype,b.dtype]))
        q,r=sl.qr(A,mode='economic',check_finite=False)
        temp=q.T.dot(b)
        for i,ri in enumerate(r[::-1]):
            result[-1-i]=(temp[-1-i]-ri[ncol-i:].dot(result[ncol-i:]))/ri[-1-i]
    else:
        temp=np.zeros(nrow,dtype=np.find_common_type([],[A.dtype,b.dtype]))
        q,r=sl.qr(dagger(A),mode='economic',check_finite=False)
        for i,ri in enumerate(dagger(r)):
            temp[i]=(b[i]-ri[:i].dot(temp[:i]))/ri[i]
        result=q.dot(temp)
    if not np.allclose(A.dot(result),b,rtol=rtol):
        raise sl.LinAlgError('solve error: no solution.')
    return result 
点赞