Python numpy.trunc() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def epoch_to_epoch16(self, epoch):
        """
        Converts a CDF EPOCH to a CDF EPOCH16 value

        Parameters
        ==========
        epoch : double
            EPOCH to convert. Lists and numpy arrays are acceptable.

        Returns
        =======
        out : (double, double)
            EPOCH16 corresponding to epoch
        """
        e = numpy.require(epoch, numpy.float64)
        s = numpy.trunc(e / 1000.0)
        #ugly numpy stuff, probably a better way....
        res = numpy.hstack((s, (e - s * 1000.0) * 1e9))
        if len(res) <= 2:
            return res
        newshape = list(res.shape[0:-2])
        newshape.append(res.shape[-1] // 2)
        newshape.append(2)
        return numpy.rollaxis(res.reshape(newshape), -1, -2) 

Example 2

def encode(self, inp, lengths):
        #input shape: minibatchsize x input_len
        #output shape: minibatchsize x input_len x n_inputnodes
        minibatchsize = inp.shape[0]
        output = np.zeros((minibatchsize, inp.shape[1]+self.ticker_steps, self.n_inputnodes), dtype=float)
        lengths -= (self.ticker_steps - 1)
        
        for mb in np.arange(minibatchsize):
            
            scaled_pos = inp[mb,:] / self.node_range
            # equals output[np.arange(len(input)), np.trunc(scaled_pos)+1] except for the last timestep
            output[mb, np.arange(inp.shape[1]), scaled_pos.astype(int)+(scaled_pos.astype(int)<self.data_nodes)] = np.abs(self.max_act * (scaled_pos-np.trunc(scaled_pos)))
            output[mb, np.arange(inp.shape[1]), scaled_pos.astype(int)] = np.abs(self.max_act - output[mb, np.arange(inp.shape[1]), scaled_pos.astype(int)+(scaled_pos.astype(int)<self.data_nodes)])
            output[mb, np.arange(inp.shape[1]), -self.exp-1:-1] = int_to_binary(inp[mb,:] % self.node_range, self.exp)
            if self.ticker_steps > 0:
                output[mb, lengths[mb]:, :] = 0
                output[mb, lengths[mb]:lengths[mb]+self.ticker_steps, -1] = 1
        
        return output 

Example 3

def trunc(x):
    return x.__class__(numpy.trunc(x)) 

Example 4

def __trunc__(self):
        return numpy.trunc(self.value) 

Example 5

def check_out_data_set(self):

        for set in ['train', 'valid', 'test']:
            if self.prm.data[set + "_data_name"] != None:
                file_name = self.prm.data["data_location"] + self.prm.data[set + "_data_name"]
                try:
                    d = klepto.archives.file_archive(file_name, cached=True,serialized=True)
                    d.load()
                    data_set_x = d['x']
                    data_set_y = d['y']
                    d.clear()
                    self.prm.data[set + "_set_len"] = data_set_x.__len__()
                    if data_set_x.__len__() != data_set_y.__len__():
                        raise Warning("x and y " + set + "_data_name have not the same length")
                    self.prm.data["x_size"] = data_set_x[0].shape[1]
                    if self.prm.data["x_size"] != int(self.prm.struct["net_size"][0]):
                        raise Warning(set + " data x size and net input size are unequal")
                    if self.prm.optimize['CTC'] == False:
                        self.prm.data["y_size"] = data_set_y[0].shape[1]
                        if self.prm.data["y_size"] != int(self.prm.struct["net_size"][-1]):
                            raise Warning(set + " data y size and net input size are unequal")
                    else:
                        self.prm.data["y_size"] = self.prm.struct["net_size"][-1]
                    del data_set_x
                    del data_set_y
                    self.prm.data[set + "_batch_quantity"] = int(np.trunc(self.prm.data[set + "_set_len" ]/self.prm.data["batch_size"]))
                    self.prm.data["checked_data"][set] = True
                except KeyError:
                    raise Warning("data_location or " + set + "_data_name wrong")





    ###### Create mini batches and storage them in klepto files
    ######################################## 

Example 6

def test_numpy_method():
    # This type of code is used frequently by PyMC3 users
    x = tt.dmatrix('x')
    data = np.random.rand(5, 5)
    x.tag.test_value = data
    for fct in [np.arccos, np.arccosh, np.arcsin, np.arcsinh,
                np.arctan, np.arctanh, np.ceil, np.cos, np.cosh, np.deg2rad,
                np.exp, np.exp2, np.expm1, np.floor, np.log,
                np.log10, np.log1p, np.log2, np.rad2deg,
                np.sin, np.sinh, np.sqrt, np.tan, np.tanh, np.trunc]:
        y = fct(x)
        f = theano.function([x], y)
        utt.assert_allclose(np.nan_to_num(f(data)),
                            np.nan_to_num(fct(data))) 

Example 7

def impl(self, x):
        return numpy.trunc(x) 

Example 8

def __init__(self, points, rho, dimension):
        """Constructor

        Initializes the grid and helper structures using the provided points
        and rho parameter.

        Args:
            points: A numpy array containing the coordinates of the particles.
            rho: Needed to compute the rho-boundary of the system.
            dimension: The dimension of the particle system.
        """
        self.points = points
        self.rho = rho
        self.dimension = dimension
        self.cell_size = 2.0 * rho

        self.aabb_min = np.amin(points, axis=0)
        self.aabb_max = np.amax(points, axis=0)

        self.grid_dims = (self.aabb_max - self.aabb_min) / self.cell_size
        # Regarding the + 3: 1 for left side, 1 for right side, 1 for rounding
        # up
        self.grid_dims = np.trunc(self.grid_dims) + 3
        self.grid_dims = self.grid_dims.astype(int)

        self.grid_min = self.aabb_min - self.cell_size
        self.grid_max = self.grid_min + self.grid_dims * self.cell_size

        self.grid_count = np.zeros(self.grid_dims, dtype=int)
        self.grid_elems = np.empty(self.grid_dims, dtype=object)

        self.update_grid()
        self.tree = NeighborsTree(
            self.points, leaf_size=10, metric='euclidean')

        self.neighbor_cell_list = self.compute_neighbor_cell_list() 

Example 9

def _detect_anoms(data, k=0.49, alpha=0.05, num_obs_per_period=None,
                  use_decomp=True, use_esd=False, direction="pos", verbose=False):

    # validation
    assert num_obs_per_period, "must supply period length for time series decomposition"
    assert direction in ['pos', 'neg', 'both'], 'direction options: pos | neg | both'
    assert data.size >= num_obs_per_period * 2, 'Anomaly detection needs at least 2 periods worth of data'
    assert data[data.isnull()].empty, 'Data contains NA. We suggest replacing NA with interpolated values before detecting anomaly'

    # conversion
    one_tail = True if direction in ['pos', 'neg'] else False
    upper_tail = True if direction in ['pos', 'both'] else False

    n = data.size

    # -- Step 1: Decompose data. This returns a univarite remainder which will be used for anomaly detection. Optionally, we might NOT decompose.
    # Note: R use stl, but here we will use MA, the result may be different TODO.. Here need improvement
    decomposed = sm.tsa.seasonal_decompose(data, freq=num_obs_per_period, two_sided=False)
    smoothed = data - decomposed.resid.fillna(0)
    data = data - decomposed.seasonal - data.mean()

    max_outliers = int(np.trunc(data.size * k))
    assert max_outliers, 'With longterm=TRUE, AnomalyDetection splits the data into 2 week periods by default. You have {0} observations in a period, which is too few. Set a higher piecewise_median_period_weeks.'.format(data.size)

    R_idx = pd.Series()

    # Compute test statistic until r=max_outliers values have been
    # removed from the sample.

    for i in range(1, max_outliers + 1):
        if verbose:
            print(i, '/', max_outliers, ' completed')

        if not data.mad():
            break

        if not one_tail:
            ares = abs(data - data.median())
        elif upper_tail:
            ares = data - data.median()
        else:
            ares = data.median() - data

        ares = ares / data.mad()

        tmp_anom_index = ares[ares.values == ares.max()].index
        cand = pd.Series(data.loc[tmp_anom_index], index=tmp_anom_index)

        data.drop(tmp_anom_index, inplace=True)

        # Compute critical value.
        p = 1 - alpha / (n - i + 1) if one_tail else (1 - alpha / (2 * (n - i + 1)))
        t = sp.stats.t.ppf(p, n - i - 1)
        lam = t * (n - i) / np.sqrt((n - i - 1 + t ** 2) * (n - i + 1))
        if ares.max() > lam:
            R_idx = R_idx.append(cand)

    return {
        'anoms': R_idx,
        'stl': smoothed
    } 

Example 10

def is_stationary(self, x):
        """Test whether the time series is stationary.

        Parameters
        ----------
        x : array-like, shape=(n_samples,)
            The time series vector.
        """
        if not self._base_case(x):
            return np.nan, False

        # ensure vector
        x = column_or_1d(check_array(
            x, ensure_2d=False, dtype=DTYPE,
            force_all_finite=True))  # type: np.ndarray
        n = x.shape[0]

        # check on status of null
        null = self.null

        # fit a model on an arange to determine the residuals
        if null == 'trend':
            t = np.arange(n).reshape(n, 1)

            # these numbers came out of the R code.. I've found 0 doc for these
            table = c(0.216, 0.176, 0.146, 0.119)
        elif null == 'level':
            t = np.ones(n).reshape(n, 1)

            # these numbers came out of the R code.. I've found 0 doc for these
            table = c(0.739, 0.574, 0.463, 0.347)
        else:
            raise ValueError("null must be one of %r" % self._valid)

        # fit the model
        lm = LinearRegression().fit(t, x)
        e = x - lm.predict(t)  # residuals
        tablep = c(0.01, 0.025, 0.05, 0.10)

        s = np.cumsum(e)
        eta = (s * s).sum() / (n**2)
        s2 = (e * e).sum() / n

        scalar, denom = 10, 14
        if self.lshort:
            scalar, denom = 3, 13
        l = int(np.trunc(scalar * np.sqrt(n) / denom))

        # compute the C subroutine
        s2 = C_tseries_pp_sum(e, n, l, s2)
        stat = eta / s2

        # do approximation
        _, pval = approx(table, tablep, xout=stat, rule=2)

        # R does a test for rule=1, but we don't want to do that, because they
        # just do it to issue a warning in case the P-value is smaller/greater
        # than the printed value is.
        return pval[0], pval[0] < self.alpha 
点赞