The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def epoch_to_epoch16(self, epoch): """ Converts a CDF EPOCH to a CDF EPOCH16 value Parameters ========== epoch : double EPOCH to convert. Lists and numpy arrays are acceptable. Returns ======= out : (double, double) EPOCH16 corresponding to epoch """ e = numpy.require(epoch, numpy.float64) s = numpy.trunc(e / 1000.0) #ugly numpy stuff, probably a better way.... res = numpy.hstack((s, (e - s * 1000.0) * 1e9)) if len(res) <= 2: return res newshape = list(res.shape[0:-2]) newshape.append(res.shape[-1] // 2) newshape.append(2) return numpy.rollaxis(res.reshape(newshape), -1, -2)
Example 2
def encode(self, inp, lengths): #input shape: minibatchsize x input_len #output shape: minibatchsize x input_len x n_inputnodes minibatchsize = inp.shape[0] output = np.zeros((minibatchsize, inp.shape[1]+self.ticker_steps, self.n_inputnodes), dtype=float) lengths -= (self.ticker_steps - 1) for mb in np.arange(minibatchsize): scaled_pos = inp[mb,:] / self.node_range # equals output[np.arange(len(input)), np.trunc(scaled_pos)+1] except for the last timestep output[mb, np.arange(inp.shape[1]), scaled_pos.astype(int)+(scaled_pos.astype(int)<self.data_nodes)] = np.abs(self.max_act * (scaled_pos-np.trunc(scaled_pos))) output[mb, np.arange(inp.shape[1]), scaled_pos.astype(int)] = np.abs(self.max_act - output[mb, np.arange(inp.shape[1]), scaled_pos.astype(int)+(scaled_pos.astype(int)<self.data_nodes)]) output[mb, np.arange(inp.shape[1]), -self.exp-1:-1] = int_to_binary(inp[mb,:] % self.node_range, self.exp) if self.ticker_steps > 0: output[mb, lengths[mb]:, :] = 0 output[mb, lengths[mb]:lengths[mb]+self.ticker_steps, -1] = 1 return output
Example 3
def trunc(x): return x.__class__(numpy.trunc(x))
Example 4
def __trunc__(self): return numpy.trunc(self.value)
Example 5
def check_out_data_set(self): for set in ['train', 'valid', 'test']: if self.prm.data[set + "_data_name"] != None: file_name = self.prm.data["data_location"] + self.prm.data[set + "_data_name"] try: d = klepto.archives.file_archive(file_name, cached=True,serialized=True) d.load() data_set_x = d['x'] data_set_y = d['y'] d.clear() self.prm.data[set + "_set_len"] = data_set_x.__len__() if data_set_x.__len__() != data_set_y.__len__(): raise Warning("x and y " + set + "_data_name have not the same length") self.prm.data["x_size"] = data_set_x[0].shape[1] if self.prm.data["x_size"] != int(self.prm.struct["net_size"][0]): raise Warning(set + " data x size and net input size are unequal") if self.prm.optimize['CTC'] == False: self.prm.data["y_size"] = data_set_y[0].shape[1] if self.prm.data["y_size"] != int(self.prm.struct["net_size"][-1]): raise Warning(set + " data y size and net input size are unequal") else: self.prm.data["y_size"] = self.prm.struct["net_size"][-1] del data_set_x del data_set_y self.prm.data[set + "_batch_quantity"] = int(np.trunc(self.prm.data[set + "_set_len" ]/self.prm.data["batch_size"])) self.prm.data["checked_data"][set] = True except KeyError: raise Warning("data_location or " + set + "_data_name wrong") ###### Create mini batches and storage them in klepto files ########################################
Example 6
def test_numpy_method(): # This type of code is used frequently by PyMC3 users x = tt.dmatrix('x') data = np.random.rand(5, 5) x.tag.test_value = data for fct in [np.arccos, np.arccosh, np.arcsin, np.arcsinh, np.arctan, np.arctanh, np.ceil, np.cos, np.cosh, np.deg2rad, np.exp, np.exp2, np.expm1, np.floor, np.log, np.log10, np.log1p, np.log2, np.rad2deg, np.sin, np.sinh, np.sqrt, np.tan, np.tanh, np.trunc]: y = fct(x) f = theano.function([x], y) utt.assert_allclose(np.nan_to_num(f(data)), np.nan_to_num(fct(data)))
Example 7
def impl(self, x): return numpy.trunc(x)
Example 8
def __init__(self, points, rho, dimension): """Constructor Initializes the grid and helper structures using the provided points and rho parameter. Args: points: A numpy array containing the coordinates of the particles. rho: Needed to compute the rho-boundary of the system. dimension: The dimension of the particle system. """ self.points = points self.rho = rho self.dimension = dimension self.cell_size = 2.0 * rho self.aabb_min = np.amin(points, axis=0) self.aabb_max = np.amax(points, axis=0) self.grid_dims = (self.aabb_max - self.aabb_min) / self.cell_size # Regarding the + 3: 1 for left side, 1 for right side, 1 for rounding # up self.grid_dims = np.trunc(self.grid_dims) + 3 self.grid_dims = self.grid_dims.astype(int) self.grid_min = self.aabb_min - self.cell_size self.grid_max = self.grid_min + self.grid_dims * self.cell_size self.grid_count = np.zeros(self.grid_dims, dtype=int) self.grid_elems = np.empty(self.grid_dims, dtype=object) self.update_grid() self.tree = NeighborsTree( self.points, leaf_size=10, metric='euclidean') self.neighbor_cell_list = self.compute_neighbor_cell_list()
Example 9
def _detect_anoms(data, k=0.49, alpha=0.05, num_obs_per_period=None, use_decomp=True, use_esd=False, direction="pos", verbose=False): # validation assert num_obs_per_period, "must supply period length for time series decomposition" assert direction in ['pos', 'neg', 'both'], 'direction options: pos | neg | both' assert data.size >= num_obs_per_period * 2, 'Anomaly detection needs at least 2 periods worth of data' assert data[data.isnull()].empty, 'Data contains NA. We suggest replacing NA with interpolated values before detecting anomaly' # conversion one_tail = True if direction in ['pos', 'neg'] else False upper_tail = True if direction in ['pos', 'both'] else False n = data.size # -- Step 1: Decompose data. This returns a univarite remainder which will be used for anomaly detection. Optionally, we might NOT decompose. # Note: R use stl, but here we will use MA, the result may be different TODO.. Here need improvement decomposed = sm.tsa.seasonal_decompose(data, freq=num_obs_per_period, two_sided=False) smoothed = data - decomposed.resid.fillna(0) data = data - decomposed.seasonal - data.mean() max_outliers = int(np.trunc(data.size * k)) assert max_outliers, 'With longterm=TRUE, AnomalyDetection splits the data into 2 week periods by default. You have {0} observations in a period, which is too few. Set a higher piecewise_median_period_weeks.'.format(data.size) R_idx = pd.Series() # Compute test statistic until r=max_outliers values have been # removed from the sample. for i in range(1, max_outliers + 1): if verbose: print(i, '/', max_outliers, ' completed') if not data.mad(): break if not one_tail: ares = abs(data - data.median()) elif upper_tail: ares = data - data.median() else: ares = data.median() - data ares = ares / data.mad() tmp_anom_index = ares[ares.values == ares.max()].index cand = pd.Series(data.loc[tmp_anom_index], index=tmp_anom_index) data.drop(tmp_anom_index, inplace=True) # Compute critical value. p = 1 - alpha / (n - i + 1) if one_tail else (1 - alpha / (2 * (n - i + 1))) t = sp.stats.t.ppf(p, n - i - 1) lam = t * (n - i) / np.sqrt((n - i - 1 + t ** 2) * (n - i + 1)) if ares.max() > lam: R_idx = R_idx.append(cand) return { 'anoms': R_idx, 'stl': smoothed }
Example 10
def is_stationary(self, x): """Test whether the time series is stationary. Parameters ---------- x : array-like, shape=(n_samples,) The time series vector. """ if not self._base_case(x): return np.nan, False # ensure vector x = column_or_1d(check_array( x, ensure_2d=False, dtype=DTYPE, force_all_finite=True)) # type: np.ndarray n = x.shape[0] # check on status of null null = self.null # fit a model on an arange to determine the residuals if null == 'trend': t = np.arange(n).reshape(n, 1) # these numbers came out of the R code.. I've found 0 doc for these table = c(0.216, 0.176, 0.146, 0.119) elif null == 'level': t = np.ones(n).reshape(n, 1) # these numbers came out of the R code.. I've found 0 doc for these table = c(0.739, 0.574, 0.463, 0.347) else: raise ValueError("null must be one of %r" % self._valid) # fit the model lm = LinearRegression().fit(t, x) e = x - lm.predict(t) # residuals tablep = c(0.01, 0.025, 0.05, 0.10) s = np.cumsum(e) eta = (s * s).sum() / (n**2) s2 = (e * e).sum() / n scalar, denom = 10, 14 if self.lshort: scalar, denom = 3, 13 l = int(np.trunc(scalar * np.sqrt(n) / denom)) # compute the C subroutine s2 = C_tseries_pp_sum(e, n, l, s2) stat = eta / s2 # do approximation _, pval = approx(table, tablep, xout=stat, rule=2) # R does a test for rule=1, but we don't want to do that, because they # just do it to issue a warning in case the P-value is smaller/greater # than the printed value is. return pval[0], pval[0] < self.alpha