The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def masked_matrix(matrix, all_zero=False): """ Returns masked version of HicMatrix. By default, all entries in zero-count rows and columns are masked. :param matrix: A numpy 2D matrix :param all_zero: Mask ALL zero-count entries :returns: MaskedArray with zero entries masked """ if all_zero: return np.ma.MaskedArray(matrix, mask=np.isclose(matrix, 0.)) col_zero = np.isclose(np.sum(matrix, axis=0), 0.) row_zero = np.isclose(np.sum(matrix, axis=1), 0.) mask = np.zeros(matrix.shape, dtype=np.bool_) mask[:, col_zero] = np.True_ mask[row_zero, :] = np.True_ return np.ma.MaskedArray(matrix, mask=mask)
Example 2
def test_logical(self): f = np.False_ t = np.True_ s = "xyz" self.assertTrue((t and s) is s) self.assertTrue((f and s) is f)
Example 3
def test_bitwise_or(self): f = np.False_ t = np.True_ self.assertTrue((t | t) is t) self.assertTrue((f | t) is t) self.assertTrue((t | f) is t) self.assertTrue((f | f) is f)
Example 4
def test_bitwise_and(self): f = np.False_ t = np.True_ self.assertTrue((t & t) is t) self.assertTrue((f & t) is f) self.assertTrue((t & f) is f) self.assertTrue((f & f) is f)
Example 5
def test_bitwise_xor(self): f = np.False_ t = np.True_ self.assertTrue((t ^ t) is f) self.assertTrue((f ^ t) is t) self.assertTrue((t ^ f) is t) self.assertTrue((f ^ f) is f)
Example 6
def test_logical(self): f = np.False_ t = np.True_ s = "xyz" self.assertTrue((t and s) is s) self.assertTrue((f and s) is f)
Example 7
def test_bitwise_or(self): f = np.False_ t = np.True_ self.assertTrue((t | t) is t) self.assertTrue((f | t) is t) self.assertTrue((t | f) is t) self.assertTrue((f | f) is f)
Example 8
def test_bitwise_and(self): f = np.False_ t = np.True_ self.assertTrue((t & t) is t) self.assertTrue((f & t) is f) self.assertTrue((t & f) is f) self.assertTrue((f & f) is f)
Example 9
def test_bitwise_xor(self): f = np.False_ t = np.True_ self.assertTrue((t ^ t) is f) self.assertTrue((f ^ t) is t) self.assertTrue((t ^ f) is t) self.assertTrue((f ^ f) is f)
Example 10
def _recalc_display_image_minmax(self): finite_mask = np.isfinite(self.display_image) if finite_mask.max() is np.True_: self._display_image_min = self.display_image[finite_mask].min() self._display_image_max = self.display_image[finite_mask].max() else: self._display_image_min = 0. self._display_image_max = 0.
Example 11
def _recalc_display_image_minmax(self): finite_mask = np.isfinite(self.display_image) if finite_mask.max() is np.True_: self._display_image_min = self.display_image[finite_mask].min() self._display_image_max = self.display_image[finite_mask].max() else: self._display_image_min = 0. self._display_image_max = 0.
Example 12
def test_logical(self): f = np.False_ t = np.True_ s = "xyz" self.assertTrue((t and s) is s) self.assertTrue((f and s) is f)
Example 13
def test_bitwise_or(self): f = np.False_ t = np.True_ self.assertTrue((t | t) is t) self.assertTrue((f | t) is t) self.assertTrue((t | f) is t) self.assertTrue((f | f) is f)
Example 14
def test_bitwise_and(self): f = np.False_ t = np.True_ self.assertTrue((t & t) is t) self.assertTrue((f & t) is f) self.assertTrue((t & f) is f) self.assertTrue((f & f) is f)
Example 15
def test_bitwise_xor(self): f = np.False_ t = np.True_ self.assertTrue((t ^ t) is f) self.assertTrue((f ^ t) is t) self.assertTrue((t ^ f) is t) self.assertTrue((f ^ f) is f)
Example 16
def test_logical(self): f = np.False_ t = np.True_ s = "xyz" self.assertTrue((t and s) is s) self.assertTrue((f and s) is f)
Example 17
def test_bitwise_or(self): f = np.False_ t = np.True_ self.assertTrue((t | t) is t) self.assertTrue((f | t) is t) self.assertTrue((t | f) is t) self.assertTrue((f | f) is f)
Example 18
def test_bitwise_and(self): f = np.False_ t = np.True_ self.assertTrue((t & t) is t) self.assertTrue((f & t) is f) self.assertTrue((t & f) is f) self.assertTrue((f & f) is f)
Example 19
def test_bitwise_xor(self): f = np.False_ t = np.True_ self.assertTrue((t ^ t) is f) self.assertTrue((f ^ t) is t) self.assertTrue((t ^ f) is t) self.assertTrue((f ^ f) is f)
Example 20
def test_logical(self): f = np.False_ t = np.True_ s = "xyz" self.assertTrue((t and s) is s) self.assertTrue((f and s) is f)
Example 21
def test_bitwise_or(self): f = np.False_ t = np.True_ self.assertTrue((t | t) is t) self.assertTrue((f | t) is t) self.assertTrue((t | f) is t) self.assertTrue((f | f) is f)
Example 22
def test_bitwise_and(self): f = np.False_ t = np.True_ self.assertTrue((t & t) is t) self.assertTrue((f & t) is f) self.assertTrue((t & f) is f) self.assertTrue((f & f) is f)
Example 23
def test_bitwise_xor(self): f = np.False_ t = np.True_ self.assertTrue((t ^ t) is f) self.assertTrue((f ^ t) is t) self.assertTrue((t ^ f) is t) self.assertTrue((f ^ f) is f)
Example 24
def test_logical(self): f = np.False_ t = np.True_ s = "xyz" self.assertTrue((t and s) is s) self.assertTrue((f and s) is f)
Example 25
def test_bitwise_or(self): f = np.False_ t = np.True_ self.assertTrue((t | t) is t) self.assertTrue((f | t) is t) self.assertTrue((t | f) is t) self.assertTrue((f | f) is f)
Example 26
def test_bitwise_and(self): f = np.False_ t = np.True_ self.assertTrue((t & t) is t) self.assertTrue((f & t) is f) self.assertTrue((t & f) is f) self.assertTrue((f & f) is f)
Example 27
def test_bitwise_xor(self): f = np.False_ t = np.True_ self.assertTrue((t ^ t) is f) self.assertTrue((f ^ t) is t) self.assertTrue((t ^ f) is t) self.assertTrue((f ^ f) is f)
Example 28
def test_logical(self): f = np.False_ t = np.True_ s = "xyz" self.assertTrue((t and s) is s) self.assertTrue((f and s) is f)
Example 29
def test_bitwise_or(self): f = np.False_ t = np.True_ self.assertTrue((t | t) is t) self.assertTrue((f | t) is t) self.assertTrue((t | f) is t) self.assertTrue((f | f) is f)
Example 30
def test_bitwise_and(self): f = np.False_ t = np.True_ self.assertTrue((t & t) is t) self.assertTrue((f & t) is f) self.assertTrue((t & f) is f) self.assertTrue((f & f) is f)
Example 31
def test_bitwise_xor(self): f = np.False_ t = np.True_ self.assertTrue((t ^ t) is f) self.assertTrue((f ^ t) is t) self.assertTrue((t ^ f) is t) self.assertTrue((f ^ f) is f)
Example 32
def aperture_phot(im, x, y, star_radius, sky_inner_radius, sky_outer_radius, return_distances=False): """ im - 2-d numpy array x,y - coordinates of center of star star_radius - radius of photometry circle sky_inner_radius, sky_outer_radius - defines annulus for determining sky (if sky_inner_radius > sky_outer_radius, aperture_phot flips them) ---- Note that this is a very quick-and-dirty aperture photometry routine. No error checking. No partial pixels. Many ways this could fail and/or give misleading results. Not to be used within 12 hours of eating food. Use only immediately after a large meal. ---- returns dictionary with: flux - sky-subtracted flux inside star_radius sky_per_pixel - sky counts per pixel determined from sky annulus sky_per_pixel_err - estimated 1-sigma uncertainty in sky_per_pixel sky_err - estimated 1-sigma uncertainty in sky subtraction from flux n_star_pix - number of pixels in star_radius n_sky_pix - number of pixels in sky annulus x - input x y - input y star_radius - input star_radius sky_inner_radius - input sky_inner_radius sky_outer_radius - input sky_outer_radius """ if np.isnan(x) or np.isnan(y): return {'error-msg':'One or both of x/y were NaN.', 'x':x, 'y':y, 'star_radius': star_radius, 'sky_inner_radius': sky_inner_radius, 'sky_outer_radius': sky_outer_radius, 'n_star_pix':0, 'n_sky_pix':0, 'sky_per_pixel':np.nan, 'sky_per_pixel_err':np.nan, 'flux':np.nan, 'sky_err':np.nan, 'distances':[]} if sky_inner_radius > sky_outer_radius: sky_inner_radius, sky_outer_radius = sky_outer_radius, sky_inner_radius output = {'x': x, 'y': y, 'star_radius': star_radius, 'sky_inner_radius': sky_inner_radius, 'sky_outer_radius': sky_outer_radius} xdist = np.outer(np.ones(im.shape[0]), np.arange(im.shape[1]) - x) ydist = np.outer(np.arange(im.shape[0]) - y, np.ones(im.shape[1])) dist = np.sqrt(xdist**2 + ydist**2) star_mask = dist <= star_radius star_pixels = im[star_mask] sky_pixels = im[(dist >= sky_inner_radius) & (dist <= sky_outer_radius)] output['n_star_pix'] = star_pixels.size output['n_sky_pix'] = sky_pixels.size finite_mask = np.isfinite(sky_pixels) if finite_mask.max() is np.True_: sky_per_pixel, median, stddev = sigma_clipped_stats(sky_pixels[finite_mask]) else: sky_per_pixel, median, stddev = np.nan, np.nan, np.inf sky_per_pixel_err = stddev/np.sqrt(finite_mask.sum()) output['sky_per_pixel'] = sky_per_pixel # TODO: check that are doing sky_per_pixel_err right. In one quick test seemed high (but maybe wasn't a good test) output['sky_per_pixel_err'] = sky_per_pixel_err output['flux'] = star_pixels.sum() - sky_per_pixel*star_pixels.size output['sky_err'] = sky_per_pixel_err*np.sqrt(star_pixels.size) if return_distances: output['distances'] = dist return output
Example 33
def aperture_phot(im, x, y, star_radius, sky_inner_radius, sky_outer_radius, return_distances=False): """ im - 2-d numpy array x,y - coordinates of center of star star_radius - radius of photometry circle sky_inner_radius, sky_outer_radius - defines annulus for determining sky (if sky_inner_radius > sky_outer_radius, aperture_phot flips them) ---- Note that this is a very quick-and-dirty aperture photometry routine. No error checking. No partial pixels. Many ways this could fail and/or give misleading results. Not to be used within 12 hours of eating food. Use only immediately after a large meal. ---- returns dictionary with: flux - sky-subtracted flux inside star_radius sky_per_pixel - sky counts per pixel determined from sky annulus sky_per_pixel_err - estimated 1-sigma uncertainty in sky_per_pixel sky_err - estimated 1-sigma uncertainty in sky subtraction from flux n_star_pix - number of pixels in star_radius n_sky_pix - number of pixels in sky annulus x - input x y - input y star_radius - input star_radius sky_inner_radius - input sky_inner_radius sky_outer_radius - input sky_outer_radius """ if np.isnan(x) or np.isnan(y): return {'error-msg':'One or both of x/y were NaN.', 'x':x, 'y':y, 'star_radius': star_radius, 'sky_inner_radius': sky_inner_radius, 'sky_outer_radius': sky_outer_radius, 'n_star_pix':0, 'n_sky_pix':0, 'sky_per_pixel':np.nan, 'sky_per_pixel_err':np.nan, 'flux':np.nan, 'sky_err':np.nan, 'distances':[]} if sky_inner_radius > sky_outer_radius: sky_inner_radius, sky_outer_radius = sky_outer_radius, sky_inner_radius output = {'x': x, 'y': y, 'star_radius': star_radius, 'sky_inner_radius': sky_inner_radius, 'sky_outer_radius': sky_outer_radius} xdist = np.outer(np.ones(im.shape[0]), np.arange(im.shape[1]) - x) ydist = np.outer(np.arange(im.shape[0]) - y, np.ones(im.shape[1])) dist = np.sqrt(xdist**2 + ydist**2) star_mask = dist <= star_radius star_pixels = im[star_mask] sky_pixels = im[(dist >= sky_inner_radius) & (dist <= sky_outer_radius)] output['n_star_pix'] = star_pixels.size output['n_sky_pix'] = sky_pixels.size finite_mask = np.isfinite(sky_pixels) if finite_mask.max() is np.True_: sky_per_pixel, median, stddev = sigma_clipped_stats(sky_pixels[finite_mask]) else: sky_per_pixel, median, stddev = np.nan, np.nan, np.inf sky_per_pixel_err = stddev/np.sqrt(finite_mask.sum()) output['sky_per_pixel'] = sky_per_pixel # TODO: check that are doing sky_per_pixel_err right. In one quick test seemed high (but maybe wasn't a good test) output['sky_per_pixel_err'] = sky_per_pixel_err output['flux'] = star_pixels.sum() - sky_per_pixel*star_pixels.size output['sky_err'] = sky_per_pixel_err*np.sqrt(star_pixels.size) if return_distances: output['distances'] = dist return output