综述
- tf.variable_scope
可以让变量有相同的命名,包括tf.get_variable得到的变量,还有tf.Variable的变量 - tf.name_scope
可以让变量有相同的命名,只是限于tf.Variable的变量
tf.variable_scope
可以让变量有相同的命名,包括tf.get_variable得到的变量,还有tf.Variable的变量
import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt;
with tf.variable_scope('V1'):
a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.variable_scope('V2'):
a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print a1.name
print a2.name
print a3.name
print a4.name
输出:
V1/a1:0
V1/a2:0
V2/a1:0
V2/a2:0
tf.name_scope
可以让变量有相同的命名,只是限于tf.Variable的变量
import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt;
with tf.name_scope('V1'):
a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print a1.name
print a2.name
print a3.name
print a4.name
报错:Variable a1 already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:
换成下面的代码就可以执行:
import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt;
with tf.name_scope('V1'):
# a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
# a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
# print a1.name
print a2.name
# print a3.name
print a4.name
输出:
V1/a2:0
V2/a2:0